
ibm.com/redbooks Redpaper

Front cover

IBM AIX Continuous
Availability Features

Octavian Lascu
Shawn Bodily
Matti Harvala

Anil K Singh
DoYoung Song

Frans Van Den Berg

Learn about AIX V6.1 and POWER6
advanced availability features

View sample programs that
exploit storage protection keys

Harden your AIX system

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM AIX Continuous Availability Features

April 2008

REDP-4367-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (April 2008)

This edition applies to Version 6, Release 1, of AIX Operating System (product number 5765-G62).

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this paper . ix
Become a published author . xi
Comments welcome. xii

Chapter 1. Introduction. 1
1.1 Overview . 2
1.2 Business continuity . 2
1.3 Disaster recovery . 3
1.4 High availability . 3
1.5 Continuous operations . 4
1.6 Continuous availability . 4

1.6.1 Reliability. 5
1.6.2 Availability . 6
1.6.3 Serviceability . 6

1.7 First Failure Data Capture. 7
1.8 IBM AIX continuous availability strategies . 8

Chapter 2. AIX continuous availability features . 11
2.1 System availability. 12

2.1.1 Dynamic Logical Partitioning. 12
2.1.2 CPU Guard . 12
2.1.3 CPU Sparing . 12
2.1.4 Predictive CPU deallocation and dynamic processor deallocation 13
2.1.5 Processor recovery and alternate processor . 13
2.1.6 Excessive interrupt disablement detection . 13
2.1.7 Memory page deallocation . 14
2.1.8 System Resource Controller . 14
2.1.9 PCI hot plug management . 15
2.1.10 Reliable Scalable Cluster Technology . 15
2.1.11 Dual IBM Virtual I/O Server . 17
2.1.12 Special Uncorrectable Error handling . 18
2.1.13 Automated system hang recovery. 19
2.1.14 Recovery framework . 19

2.2 System reliability . 19
2.2.1 Error checking. 20
2.2.2 Extended Error Handling. 20
2.2.3 Paging space verification . 21
2.2.4 Storage keys . 21

2.3 System serviceability. 23
2.3.1 Advanced First Failure Data Capture features . 23
2.3.2 Traditional system dump. 23
2.3.3 Firmware-assisted system dump . 24
2.3.4 Live dump and component dump . 25
2.3.5 The dumpctrl command . 26
2.3.6 Parallel dump . 27
© Copyright IBM Corp. 2008. All rights reserved. iii

2.3.7 Minidump . 27
2.3.8 Trace (system trace) . 27
2.3.9 Component Trace facility . 29
2.3.10 Lightweight Memory Trace (LMT) . 30
2.3.11 ProbeVue . 30
2.3.12 Error logging . 30
2.3.13 The alog facility . 31
2.3.14 syslog . 32
2.3.15 Concurrent AIX Update. 34
2.3.16 Core file control . 35

2.4 Network tools . 36
2.4.1 Virtual IP address support (VIPA) . 37
2.4.2 Multipath IP routing . 37
2.4.3 Dead gateway detection . 37
2.4.4 EtherChannel . 38
2.4.5 IEEE 802.3ad Link Aggregation . 39
2.4.6 2-Port Adapter-based Ethernet failover. 40
2.4.7 Shared Ethernet failover . 40

2.5 Storage tools . 40
2.5.1 Hot swap disks . 40
2.5.2 System backup (mksysb) . 40
2.5.3 Alternate disk installation . 41
2.5.4 The multibos utility . 41
2.5.5 Network Installation Manager (NIM) . 42
2.5.6 Logical Volume Manager-related options . 42
2.5.7 Geographic Logical Volume Manager. 44
2.5.8 Journaled File System-related options . 46
2.5.9 AIX storage device driver-related options . 46

2.6 System and performance monitoring and tuning . 48
2.6.1 Electronic Service Agent . 48
2.6.2 Other tools for monitoring a system . 49
2.6.3 The topas command . 49
2.6.4 Dynamic kernel tuning . 50

2.7 Security . 51
2.8 AIX mobility features . 52

2.8.1 Live partition mobility . 52
2.8.2 Live application mobility . 52

Chapter 3. AIX advanced continuous availability tools and features. 55
3.1 AIX Reliability, Availability, and Serviceability component hierarchy 56

3.1.1 First Failure Data Capture feature. 56
3.2 Lightweight memory trace . 57

3.2.1 LMT implementation . 57
3.3 The snap command . 61
3.4 Minidump facility . 61

3.4.1 Minidump formatter . 62
3.5 Live dump and component dump . 64

3.5.1 Dump-aware components . 64
3.5.2 Performing a live dump . 68

3.6 Concurrent AIX Update . 71
3.6.1 Concurrent AIX Update terminology . 71
3.6.2 Concurrent AIX Update commands and SMIT menus . 72
iv IBM AIX Continuous Availability Features

3.7 Storage protection keys . 77
3.7.1 Storage protection keys overview . 77
3.7.2 System management support for storage keys. 79
3.7.3 Kernel mode protection keys . 80
3.7.4 Degrees of storage key protection and porting considerations. 84
3.7.5 Protection gates . 87
3.7.6 Example using kernel keys . 90
3.7.7 User mode protection keys . 100
3.7.8 Kernel debugger commands. 108
3.7.9 Storage keys performance impact . 111

3.8 ProbeVue . 111
3.8.1 ProbeVue terminology . 113
3.8.2 Vue programming language . 113
3.8.3 The probevue command . 114
3.8.4 The probevctrl command . 114
3.8.5 Vue overview . 114
3.8.6 ProbeVue dynamic tracing example . 119
3.8.7 Other considerations for ProbeVue. 125

3.9 Xmalloc debug enhancements in AIX V6.1. 125
3.9.1 New features in xmalloc debug. 126
3.9.2 Enabling/disabling xmalloc RTEC and displaying current value 126
3.9.3 Run-time error checking (RTEC) levels for XMDBG (alloc.xmdbg) 127
3.9.4 XMDBG tunables affected by error check level . 131
3.9.5 XMDBG tunables not affected by error check level . 134
3.9.6 KDB commands for XMDBG. 136
3.9.7 Heap registration for individual debug control. 137

Appendix A. AIX features availability . 139

Abbreviations and acronyms . 143

Related publications . 145
IBM Redbooks publications . 145
Other publications . 145
Online resources . 146
How to get IBM Redbooks publications . 146
Help from IBM . 146

Index . 147
 Contents v

vi IBM AIX Continuous Availability Features

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2008. All rights reserved. vii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
eServer™
pSeries®
z/OS®
AIX 5L™
AIX®
Blue Gene®
DB2®
Electronic Service Agent™
General Parallel File System™

GPFS™
HACMP™
IBM®
Power Architecture®
PowerPC®
POWER™
POWER Hypervisor™
POWER3™
POWER4™
POWER5™

POWER6™
Redbooks®
RS/6000®
System i™
System p™
System p5™
System z™
Workload Partitions Manager™

The following terms are trademarks of other companies:

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
viii IBM AIX Continuous Availability Features

Preface

This IBM® Redpaper describes the continuous availability features of IBM AIX® Version 6,
Release 1. It also addresses and defines the terms Reliability, Availability, and Serviceability
(RAS) as used in an IT infrastructure. It touches on the global availability picture for an IT
environment in order to better clarify and explain how AIX can improve that availability. The
paper is intended for AIX specialists, whether customers, business partners, or IBM
personnel, who are responsible for server availability.

A key goal of AIX development is to improve overall system serviceability by developing
problem determination tools and techniques that have minimal impact on a live system. This
document explains the new debugging tools and techniques, as well as the kernel facilities
that work in conjunction with new hardware, that can help you provide continuous availability
for your AIX systems.

The paper provides a broad description of the advanced continuous availability tools and
features on AIX that help to capture software problems at the moment they appear with no
need to recreate the failure. In addition to software problems, the AIX kernel works closely
with advanced hardware features to identify and isolate failing hardware and replace
hardware components dynamically without bringing down the system.

Among the tools discussed in this Redpaper are Dynamic Trace, Lightweight Memory Trace,
Component Trace, Live dump and Component dump, Storage protection keys (kernel and
user), Live Kernel update, and xmalloc debug.

The team that wrote this paper

This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Austin Center.

Octavian Lascu is a Project Leader associated with the ITSO, Poughkeepsie Center. He
writes extensively and teaches IBM classes worldwide on all areas of IBM System p™ and
Linux® clusters. His areas of expertise include High Performance Computing, Blue Gene®
and Clusters. Before joining the ITSO, Octavian worked in IBM Global Services Romania as a
software and hardware Services Manager. He holds a Master's Degree in Electronic
Engineering from the Polytechnical Institute in Bucharest, and is also an IBM Certified
Advanced Technical Expert in AIX/PSSP/HACMP™. He has worked for IBM since 1992.

Shawn Bodily is a Certified Consulting IT Specialist with Advanced Technical Support (ATS)
Americas based in Dallas, TX, and has worked for IBM for nine years. With 12 years of
experience in AIX, his area of expertise for the last 10 years has been HACMP. Shawn has
written and presented extensively on high availability for System p. He has co-authored two
IBM Redbooks® publications.

Matti Harvala is an Advisory IT Specialist in Finland, and has worked for IBM for more than
eight years. Matti has 10 years of experience supporting UNIX® systems, and holds a
Bachelor of Science degree in Information Technology Engineering. His areas of expertise
include AIX systems support, AIX Advanced Power Virtualization, NIM and DS 4000 family
disk subsystems.

Anil K Singh is a Senior Software Engineer in India. He has six years of experience in testing
and development, including more than three years in AIX. He holds a Bachelor of
© Copyright IBM Corp. 2008. All rights reserved. ix

Engineering degree in Computer Science. Anil’s areas of expertise include programming and
testing in kernel and user mode for TCP/IP, malloc subsystem, WPAR and WLM.

DoYoung Song is a Consulting IT specialist for pre-sales technical support in the IBM
Technical Sales Support group in Seoul, and has worked for IBM for 17 years. He currently
works as an IT Systems Architect. DoYoung has 15 years of experience in AIX, RS/6000®,
and IBM System p. His areas of expertise include technologies and solutions on AIX and
pSeries®, and System p high-end server systems, supporting IBM sales, IBM Business
Partners, and clients with IT infrastructure and pre-sales consulting.

Frans Van Den Berg is an IT Specialist in the United Kingdom, and has worked at IBM for
more than seven years. Frans has 11 years of experience working with UNIX. His areas of
expertise include knowledge of a number of key operating systems, backup and recovery,
security, database and software packages, SAN, storage and hardware skills.

Thanks to the following people for their contributions to this project:

Michael Lyons
IBM Austin

Susan Schreitmueller
IBM Dallas

Jay Kruemcke
IBM Austin

Michael S Wilcox
IBM Tulsa

Maria R Ward
IBM Austin

Saurabh Sharma
IBM Austin

Daniel Henderson, Brian Warner, Jim Mitchell
IBM Austin

Thierry Fauck
IBM France

Bernhard Buehler
IBM Germany

Donald Stence
IBM Austin

James Moody
IBM Austin

Grégoire Pichon
BULL AIX development, France

Jim Shaffer
IBM Austin, TX

Shajith Chandran
IBM India
x IBM AIX Continuous Availability Features

Suresh Warrier
IBM Austin TX

Bruce Mealey
IBM Austin TX

Larry Brenner
IBM Austin TX

Mark Rogers
IBM Austin TX

Bruno Blanchard
IBM France

Steve Edwards
IBM UK

Brad Gough
IBM Australia

Hans Mozes
IBM Germany

The IBM Redbooks publication team for IBM AIX V6.1 Differences Guide
Rosa Sanches
IBM France

Roman Aleksic
Zürcher Kantonalbank, Switzerland

Ismael Castillo
IBM Austin, TX

Armin Röll
IBM Germany

Nobuhiko Watanabe
IBM Japan Systems Engineering

Scott Vetter
International Technical Support Organization, Austin Center

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.
 Preface xi

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xii IBM AIX Continuous Availability Features

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction

This chapter addresses some of the common concepts and defines the associated terms
used in IT infrastructure and generally referred to as Reliability, Availability, and Serviceability
(RAS). Although this paper covers the AIX V6, R1 operating system continuous availability
features, it also introduces the global availability picture for an IT environment in order to
better identify and understand what AIX brings to overall IT environment availability.

The chapter contains the following topics:

� Overview

� Business continuity

� Disaster recovery

� High availability

� Continuous operations

� Continuous availability

� First Failure Data Capture

� IBM AIX continuous availability strategies

1

© Copyright IBM Corp. 2008. All rights reserved. 1

1.1 Overview

In May 2007, IBM introduced the newest Power Architecture® technology-based line of
servers incorporating the inventive IBM POWER6™ processor technology to deliver both
outstanding performance and enhanced reliability, availability, and serviceability capabilities.
This new line of servers enhances the IBM POWER5™ processor-based server family, with
new capabilities designed to help ease administrative burdens and increase system
utilization.

In addition, IBM virtualization technologies1, available in the IBM System p and System i
product families, enable individual servers to run dozens or even hundreds of mission-critical
applications.

Today's enterprises can no longer afford planned or unplanned system outages. Even a few
minutes of application downtime can result in financial losses, eroded customer confidence,
damage to brand image, and public relations problems.

To better control and manage their IT infrastructure, enterprises have concentrated their IT
operations in large (and on demand) data centers. These data centers must be resilient
enough to handle the ups and downs of the global market, and must manage changes and
threats with consistent availability, security and privacy, both around the clock and around the
world. Most of the solutions are based on an integration of operating system clustering
software, storage, and networking.

How a system, server or environment handles failures is characterized as its reliability,
availability and serviceability. In today's world of e-business, the reliability, availability and
serviceability of an operating system and the hardware on which it executes have assumed
great importance.

Today's businesses require that IT systems be self-detecting, self-healing, and support 7x24x
365 operations. More and more IT systems are adopting fault tolerance through techniques
such as redundancy and error correction, to achieve a high level of reliability, availability, and
serviceability.

The reliability, availability and serviceability characteristics will be a significant market
differentiator in the UNIX server space. This has resulted in UNIX servers attaining the
reliability, availability and serviceability levels that were once considered to be available only
on the mainframe systems.

More and more IT systems are adopting fault tolerance through redundancy, memory failure
detection and correction methods, to achieve a high level of reliability, availability and
serviceability.

The following sections discuss the concepts of continuous availability features in more detail.

1.2 Business continuity

The terms business continuity and disaster recovery are sometimes used interchangeably (as
are business resumption and contingency planning). The following sections explain the
definitions used in this paper.

1 Virtualization features available for IBM System p and System i™ servers may depend on the type of hardware
used, and may be subject to separate licensing.
2 IBM AIX Continuous Availability Features

Here, business continuity is defined as the ability to adapt and respond to risks, as well as
opportunities, in order to maintain continuous business operations. However, business
continuity solutions applied in one industry might not be applicable to a different industry,
because they may have different sets of business continuity requirements and strategies.

Business continuity is implemented using a plan that follows a strategy that is defined
according to the needs of the business. A total Business Continuity Plan has a much larger
focus and includes items such as a crisis management plan, business impact analysis,
human resources management, business recovery plan procedure, documentation and so
on.

1.3 Disaster recovery

Here, disaster recovery is defined as the ability to recover a data center at a different site if a
disaster destroys the primary site or otherwise renders it inoperable. The characteristics of a
disaster recovery solution are that IT processing resumes at an alternate site, and on
completely separate hardware.

Disaster recovery (DR) is a coordinated activity to enable the recovery of IT and business
systems in the event of disaster. A DR plan covers both the hardware and software required
to run critical business applications and the associated processes, and to (functionally)
recover a complete site. The DR for IT operations employs additional equipment (in a
physically different location) and the use of automatic or manual actions and methods to
recover some or all of the affected business processes.

1.4 High availability

High availability is the attribute of a system which provides service during defined periods, at
acceptable or agreed-upon levels, and masks unplanned outages from end users. It often
consists of redundant hardware components, automated failure detection, recovery, bypass
reconfiguration, testing, problem determination and change management procedures.

In addition, high availability is also the ability (and associated processes) to provide access to
applications regardless of hardware, software, or system management issues. This is
achieved through greatly reducing, or masking, planned downtime. Planned downtime often
includes hardware upgrades, repairs, software updates, backups, testing, and development.

High availability solutions should eliminate single points of failure (SPOFs) through
appropriate design, planning, selection of hardware, configuration of software, and carefully
controlled change management discipline. High availability is fault resilience, but not fault
tolerance.

Clarification:

� Disaster recovery is only one component of an overall business continuity plan.

� Business continuity planning forms the first level of planning before disaster recovery
comes in to the plan.
Chapter 1. Introduction 3

1.5 Continuous operations

Continuous operations is an attribute of IT environments and systems which allows them to
continuously operate and mask planned outages from end users. Continuous operations
employs non-disruptive hardware, software, configuration and administrative changes.

Unplanned downtime is an unexpected outage and often is the result of administrator error,
application software failure, operating system faults, hardware faults, or environmental
disasters.

Generally, hardware component failure represents an extremely small proportion of overall
system downtime. By far, the largest single contributor to system downtime is planned
downtime. For example, shutting down a computer for the weekend is considered planned
downtime. Stopping an application to take a level 0 (full) system backup is also considered
planned downtime.

1.6 Continuous availability

Continuous availability is an attribute of a system which allows it to deliver non-disruptive
service to end users 7 days a week, 24 hours a day by preventing both planned and
unplanned outages.

Continuous availability (Elimination of downtime) = Continuous operations (Masking or
elimination of planned downtime) + High availability (Masking or elimination of unplanned
downtime)

Most of today’s solutions are based on an integration of the operating system with clustering
software, storage, and networking. When a failure is detected, the integrated solution will
trigger an event that will perform a predefined set of tasks required to reactivate the operating
system, storage, network, and in many cases, the application on another set of servers and
storage. This kind of functionality is defined as IT continuous availability.

The main goal in protecting an IT environment is to achieve continuous availability; that is,
having no end-user observed downtime. Continuous availability is a collective term for those
characteristics of a product which make it:

� Capable of performing its intended functions under stated conditions for a stated period of
time (reliability)

� Ready to perform its function whenever requested (availability)

� Able to quickly determine the cause of an error and to provide a solution to eliminate the
effects of the error (serviceability)

Continuous availability encompasses techniques for reducing the number of faults,
minimizing the effects of faults when they occur, reducing the time for repair, and enabling the
customer to resolve problems as quickly and seamlessly as possible.

AIX continuous availability encompasses all tools and techniques implemented at the
operating system level that contribute to overall system availability. Figure 1-1 on page 5
illustrates AIX continuous availability.
4 IBM AIX Continuous Availability Features

Figure 1-1 Positioning AIX continuous availability

1.6.1 Reliability

From a server hardware perspective, reliability is a collection of technologies (such as chipkill
memory error detection/correction, dynamic configuration and so on) that enhance system
reliability by identifying specific hardware errors and isolating the failing components.

Built-in system failure recovery methods enable cluster nodes to recover, without falling over
to a backup node, when problems have been detected by a component within a node in the
cluster. Built-in system failure recovery should be transparent and achieved without the loss
or corruption of data. It should also be much faster compared to system or application failover
recovery (failover to a backup server and recover). And because the workload does not shift
from this node to another, no other node's performance or operation should be affected.
Built-in system recovery should cover applications (monitoring and restart), disks, disk
adapters, LAN adapters, power supplies (battery backups) and fans.

From a software perspective, reliability is the capability of a program to perform its intended
functions under specified conditions for a defined period of time. Software reliability is
achieved mainly in two ways: infrequent failures (built-in software reliability), and extensive
recovery capabilities (self healing - availability).

IBM's fundamental focus on software quality is the primary driver of improvements in reducing
the rate of software failures. As for recovery features, IBM-developed operating systems have
historically mandated recovery processing in both the mainline program and in separate
recovery routines as part of basic program design.

As IBM System p systems become larger, more and more customers expect mainframe levels
of reliability. For some customers, this expectation derives from their prior experience with
mainframe systems which were “downsized” to UNIX servers. For others, this is simply a
consequence of having systems that support more users.

The cost associated with an outage grows every year, therefore avoiding outages becomes
increasingly important. This leads to new design requirements for all AIX-related software.

P
olicies

C
hange m

anagem
ent

Security

Business Continuity

Continuous
Availability

Operating
System

Hardware

High
Availability

Continuous
Operation

AIX
continuous
availability

features

Disaster Recovery
Chapter 1. Introduction 5

For all operating system or application errors, recovery must be attempted. When an error
occurs, it is not valid to simply give up and terminate processing. Instead, the operating
system or application must at least try to keep the component affected by the error up and
running. If that is not possible, the operating system or application should make every effort to
capture the error data and automate system restart as quickly as possible.

The amount of effort put into the recovery should, of course, be proportional to the impact of a
failure and the reasonableness of “trying again”. If actual recovery is not feasible, then the
impact of the error should be reduced to the minimum appropriate level.

Today, many customers require that recovery processing be subject to a time limit and have
concluded that rapid termination with quick restart or takeover by another application or
system is preferable to delayed success. However, takeover strategies rely on redundancy
that becomes more and more expensive as systems get larger, and in most cases the main
reason for quick termination is to begin a lengthy takeover process as soon as possible.
Thus, the focus is now shifting back towards core reliability, and that means quality and
recovery features.

1.6.2 Availability

Today’s systems have hot plug capabilities for many subcomponents, from processors to
input/output cards to memory. Also, clustering techniques, reconfigurable input/output data
paths, mirrored disks, and hot swappable hardware should help to achieve a significant level
of system availability.

From a software perspective, availability is the capability of a program to perform its function
whenever it is needed. Availability is a basic customer requirement. Customers require a
stable degree of certainty, and also require that schedules and user needs are met.

Availability gauges the percentage of time a system or program can be used by the customer
for productive use. Availability is determined by the number of interruptions and the duration
of the interruptions, and depends on characteristics and capabilities which include:

� The ability to change program or operating system parameters without rebuilding the
kernel and restarting the system

� The ability to configure new devices without restarting the system

� The ability to install new software or update existing software without restarting the system

� The ability to monitor system resources and programs and cleanup or recover resources
when failures occur

� The ability to maintain data integrity in spite of errors

The AIX operating system includes many availability characteristics and capabilities from
which your overall environment will benefit.

1.6.3 Serviceability

Focus on serviceability is shifting from providing customer support remotely through
conventional methods, such as phone and e-mail, to automated system problem reporting
and correction, without user (or system administrator) intervention.

Hot swapping capabilities of some hardware components enhances the serviceability aspect.
A service processor with advanced diagnostic and administrative tools further enhances the
system serviceability. A System p server's service processor can call home in the service
report, providing detailed information for IBM service to act upon. This automation not only
6 IBM AIX Continuous Availability Features

eases the burden placed on system administrators and IT support staff, but also enables
rapid and precise collection of problem data.

On the software side, serviceability is the ability to diagnose and correct or recover from an
error when it occurs. The most significant serviceability capabilities and enablers in AIX are
referred to as the software service aids. The primary software service aids are error logging,
system dump, and tracing.

With the advent of next generation UNIX servers from IBM, many hardware reliability-,
availability-, and serviceability-related issues such as memory error detection, LPARs,
hardware sensors and so on have been implemented. These features are supported with the
relevant software in AIX. These abilities continue to establish AIX as the best UNIX operating
system.

1.7 First Failure Data Capture

IBM has implemented a server design that builds in thousands of hardware error checker
stations that capture and help to identify error conditions within the server. The IBM System p
p5-595 server, for example, includes almost 80,000 checkers to help capture and identify
error conditions. These are stored in over 29,000 Fault Isolation Register bits. Each of these
checkers is viewed as a “diagnostic probe” into the server, and, when coupled with extensive
diagnostic firmware routines, allows quick and accurate assessment of hardware error
conditions at run-time.

Integrated hardware error detection and fault isolation is a key component of the System p
and System i platform design strategy. It is for this reason that in 1997, IBM introduced First
Failure Data Capture (FFDC) for IBM POWER™ servers. FFDC plays a critical role in
delivering servers that can self-diagnose and self-heal. The system effectively traps hardware
errors at system run time.

FFDC is a technique which ensures that when a fault is detected in a system (through error
checkers or other types of detection methods), the root cause of the fault will be captured
without the need to recreate the problem or run any sort of extended tracing or diagnostics
program. For the vast majority of faults, an effective FFDC design means that the root cause
can also be detected automatically without servicer intervention. The pertinent error data
related to the fault is captured and saved for further analysis.

In hardware, FFDC data is collected in fault isolation registers based on the first event that
had occurred. FFDC check stations are carefully positioned within the server logic and data
paths to ensure that potential errors can be quickly identified and accurately tracked to an
individual Field Replaceable Unit (FRU).

This proactive diagnostic strategy is a significant improvement over less accurate “reboot and
diagnose” service approaches. Using projections based on IBM internal tracking information,
it is possible to predict that high impact outages would occur two to three times more
frequently without an FFDC capability.

In fact, without some type of pervasive method for problem diagnosis, even simple problems
that occur intermittently can cause serious and prolonged outages. By using this proactive
diagnostic approach, IBM no longer has to rely on an intermittent “reboot and retry” error
detection strategy, but instead knows with some certainty which part is having problems.

This architecture is also the basis for IBM predictive failure analysis, because the Service
Processor can now count and log intermittent component errors and can deallocate or take
other corrective actions when an error threshold is reached.
Chapter 1. Introduction 7

IBM has tried to enhance FFDC features such that in most cases, failures in AIX will not result
in recreate requests, also known as Second Failure Data Capture (SFDC), from AIX support
to customers in order to solve the problem. In AIX, this service functionality focuses on
gathering sufficient information upon a failure to allow for complete diagnosis without
requiring failure reproduction. For example, Lightweight Memory Trace (LMT) support
introduced with AIX V5.3 ML3 represents a significant advance in AIX first failure data capture
capabilities, and provides service personnel with a powerful and valuable tool for diagnosing
problems.

The Run-Time Error Checking (RTEC) facility provides service personnel with a method to
manipulate debug capabilities that are already built into product binaries. RTEC provides
service personnel with powerful first failure data capture and second failure data capture
(SFDC) error detection features. This SFDC service functionality focuses on tools to enhance
serviceability data gathering after an initial failure. The basic RTEC framework has been
introduced in AIX V5.3 TL3, and extended with additional features in subsequent AIX
releases.

1.8 IBM AIX continuous availability strategies

There are many market requirements for continuous availability to resolve typical customer
pain points, including:

� Too many scheduled outages

� Service depends on problem recreation and intrusive problem determination

� System unavailability disrupts customer business

� Need for reliable protection of customer data

IBM has made AIX robust with respect to continuous availability characteristics, and this
robustness makes IBM UNIX servers the best in the market. IBM's AIX continuous availability
strategy has the following characteristics:

� Reduce the frequency and severity of AIX system outages, planned and unplanned

� Improve serviceability by enhancing AIX failure data capture tools.

� Provide enhancements to debug and problem analysis tools.

� Ensure that all necessary information involving unplanned outages is provided, to correct
the problem with minimal customer effort

� Use of mainframe hardware features for operating system continuous availability brought
to System p hardware

� Provide key error detection capabilities through hardware-assist

� Exploit other System p hardware aspects to continue transition to “stay-up” designs

� Use of “stay-up” designs for continuous availability

� Maintain operating system availability in the face of errors while minimizing application
impacts

� Use of sophisticated and granular operating system error detection and recovery
capabilities

� Maintain a strong tie between serviceability and availability

� Provide problem diagnosis from data captured at first failure without the need for further
disruption

� Provide service aids that are non-disruptive to the customer environment
8 IBM AIX Continuous Availability Features

� Provide end-to-end and integrated continuous availability capabilities across the server
environment and beyond the base operating system

� Provide operating system enablement and application and storage exploitation of the
continuous availability environment

This paper explores and explains continuous availability features and enhancements
available in AIX V5.3, as well as the new features in AIX V6.1.

The goal is to provide a summarized, exact definition of all the enhancements (including
those not visible directly by users, as well as the visible ones), complete with working
scenarios of commands and the background information required to understand a topic.

The paper is intended for AIX specialists, whether customers, business partners, or IBM
personnel, who are responsible for server availability.
Chapter 1. Introduction 9

10 IBM AIX Continuous Availability Features

Chapter 2. AIX continuous availability
features

This chapter explains the features and tools that exist in AIX to enhance the availability of the
AIX operating system. It summarizes both new and existing AIX availability, reliability, and
serviceability features and tools.

Today's IT industries can no longer afford system outages, whether planned or unplanned.
Even a few minutes of application downtime can cause significant financial losses, erode
client confidence, damage brand image, and create public relations problems.

The primary role of an operating system is to manage the physical resources of a computer
system to optimize the performance of its applications. In addition, an operating system
needs to handle changes in the amount of physical resources allocated to it in a smooth
fashion and without any downtime. Endowing a computing system with this self-management
feature often translates to the implementation of self-protecting, self-healing, self-optimizing,
and self-configuring facilities and features.

Customers are looking for autonomic computing, in the ability of components and operating
systems to adapt smoothly to changes in their environment. Some of the most prominent
physical resources of an operating system are processors, physical memory, and I/O
devices; how a system deals with the loss of any of these resources is an important feature in
the making of a continuously available operating system. At the same time, the need to add
and remove resources, as well as maintain systems with little or no impact to the application
or database environment, and hence the business, are other important considerations.

2

© Copyright IBM Corp. 2008. All rights reserved. 11

2.1 System availability

AIX is built on architectural foundations that enable servers to continuously tune themselves,
adapt to unexpected conditions, help prevent and recover from failures, and provide a safe
environment for critical data and systems. Specific examples of these features of AIX include
First Failure Data Capture (FFDC), automatic system recovery and I/O hang detection and
recovery, self-optimizing disk management, dynamic partitioning for efficient resource
utilization and the ability to automatically dial-up for service in anticipation of a system failure.
AIX is designed to automate systems management and to maximize system availability.

2.1.1 Dynamic Logical Partitioning

The Dynamic Logical Partitioning (DLPAR) feature allows processor, memory, and I/O-slot
resources to be added, deleted from, or moved between running partitions, without requiring
any AIX instance to be rebooted. For more detailed information about DLPAR, refer to the
IBM Redbooks publication, Advanced POWER Virtualization on IBM System p5: Introduction
and Configuration, SG24-7940, which is located at the following site:

http://www.redbooks.ibm.com/redbooks/pdfs/sg247940.pdf

2.1.2 CPU Guard

For dynamic processor deallocation, the service processor performs a predictive failure
analysis based on any recoverable processor errors that have been recorded. If these
transient errors exceed a defined threshold, the event is logged and the processor is
deallocated from the system while the operating system continues to run.

The original CPU Guard feature predicts the failure of a running CPU by monitoring certain
types of transient errors and dynamically takes the CPU offline, but it does not provide a
substitute CPU, so that a customer is left with less computing power. Additionally, the older
feature will not allow an SMP system to operate with fewer than two processors.

The Dynamic CPU Guard feature, introduced in AIX 5.2, is an improved and dynamic version
of the original CPU Guard that was available in earlier AIX versions. The key differences are
that it utilizes DLPAR technologies and allows the operating system to function with only one
processor. This feature, beginning with AIX 5.2, is enabled by default. Example 2-1 shows
how to check this attribute.

Example 2-1 Dynamic CPU Guard

briley# lsattr -El sys0 |grep cpuguard
cpuguard enable CPU Guard True

If this feature is disabled, you can enable it by executing the chdev command as follows:

chdev -l sys0 -a cpuguard=enable

2.1.3 CPU Sparing

The Dynamic CPU Sparing feature allows the transparent substitution of a suspected
defective CPU with a good unlicensed processor (part of a Capacity on Demand processor
pool). This online switch is made seamlessly, so that applications and kernel extensions are
not impacted.
12 IBM AIX Continuous Availability Features

http://www.redbooks.ibm.com/redbooks/pdfs/sg247940.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247940.pdf

The new processor autonomously replaces the defective one. Dynamic CPU Guard and
Dynamic CPU Sparing work together to protect a customer's investments through their
self-diagnosing and self-healing software. More information is available at the following site:

http://www.research.ibm.com/journal/sj/421/jann.html

2.1.4 Predictive CPU deallocation and dynamic processor deallocation

On these systems, AIX implements continuous hardware surveillance and regularly polls the
firmware for hardware errors. When the number of processor errors hits a threshold and the
firmware recognizes that there is a distinct probability that this system component will fail,
then the firmware returns an error report. In all cases, the error is logged in the system error
log. In addition, on multiprocessor systems, depending on the type of failure, AIX attempts to
stop using the untrustworthy processor and deallocate it. More information is available at the
following site:

http://www-05.ibm.com/cz/power6/files/zpravy/WhitePaper_POWER6_availabilty.PDF

2.1.5 Processor recovery and alternate processor

Although this is related mainly to System p hardware, AIX still plays a role in this process and
coding in AIX allows the alternate processor recovery feature to deallocate and deconfigure a
failing processor by moving the instruction stream over to and restarting it on a spare
processor. These operations can be accomplished by the POWER Hypervisor™ and
POWER6 hardware without application interruption, thus allowing processing to continue
unimpeded. More information is available at the following site:

http://www-05.ibm.com/cz/power6/files/zpravy/WhitePaper_POWER6_availabilty.PDF

2.1.6 Excessive interrupt disablement detection

AIX V5.3 ML3 has introduced a new feature which can detect a period of excessive interrupt
disablement on a CPU, and create an error log record to report it. This allows you to know if
privileged code running on a system is unduly (and silently) impacting performance. It also
helps to identify and improve such offending code paths before the problems manifest in
ways that have proven very difficult to diagnose in the past.

This feature employs a kernel profiling approach to detect disabled code that runs for too
long. The basic idea is to take advantage of the regularly scheduled clock “ticks” that
generally occur every 10 milliseconds, using them to approximately measure continuously
disabled stretches of CPU time individually on each logical processor in the configuration.

This approach will alert you to partially disabled code sequences by logging one or more hits
within the offending code. It will alert you to fully disabled code sequences by logging the
i_enable that terminates them.

You can turn excessive interrupt disablement off and on, respectively, by changing the
proc.disa RAS component:

errctrl -c proc.disa errcheckoff
errctrl -c proc.disa errcheckon

Note that the preceding commands only affect the current boot. In AIX 6.1, the -P flag is
introduced so that the setting can be changed persistently across reboots, for example:

errctrl -c proc.disa -P errcheckoff
Chapter 2. AIX continuous availability features 13

http://www.research.ibm.com/journal/sj/421/jann.html
http://www.research.ibm.com/journal/sj/421/jann.html
http://www-05.ibm.com/cz/power6/files/zpravy/WhitePaper_POWER6_availabilty.PDF
http://www-05.ibm.com/cz/power6/files/zpravy/WhitePaper_POWER6_availabilty.PDF

On AIX 5.3, the only way to persistently disable component error checking (including
excessive interrupt disablement detection) is to turn it off at the system level. On AIX 5.3 TL3
and TL4, this is done via:

errctrl errcheckoff -c all

On AIX 5.3 ML5 and later releases, it is done via:

errctrl -P errcheckoff

Additional detailed information about excessive interrupt disablement is available at the
following site:

http://www-1.ibm.com/support/docview.wss?uid=isg3T1000678

2.1.7 Memory page deallocation

While a coincident single memory cell error in separate memory chips is a statistical rarity,
POWER6 processor-based systems can contain these errors using a memory page
deallocation scheme for partitions running AIX. If a memory fault is detected by the Service
Processor at boot time, the affected memory will be marked as bad and will not be used on
subsequent reboots. This is known as Memory Persistent Deallocation. If the service
processor identifies faulty memory in a server that includes Capacity on Demand (CoD)
memory, the POWER Hypervisor attempts to replace the faulty memory with available CoD
memory.

In other cases, the POWER Hypervisor notifies the owning partition that the page should be
deallocated. Where possible, the operating system moves any data currently contained in
that memory area to another memory area and removes the pages associated with this error
from its memory map, no longer addressing these pages. The operating system performs
memory page deallocation without any user intervention and is transparent to end users and
applications.

Additional detailed information about memory page deallocation is available at the following
site:

http://www-05.ibm.com/cz/power6/files/zpravy/WhitePaper_POWER6_availabilty.PDF

2.1.8 System Resource Controller

The System Resource Controller (SRC) provides a set of commands and subroutines to
make it easier for the system administrators to create and control subsystems. A subsystem is
any program or process or set of programs or processes that is usually capable of operating
independently or with a controlling system. A subsystem is designed as a unit to provide a
designated function.

The SRC was designed to minimize the need for operator intervention. It provides a
mechanism to control subsystem processes using a common command line and the C
interface. This mechanism includes the following:

� Consistent user interface for start, stop, and status inquiries
� Logging of the abnormal termination of subsystems
� Notification program called at the abnormal system termination of related processes
� Tracing of a subsystem, a group of subsystems, or a subserver
� Support for control of operations on a remote system
� Refreshing of a subsystem (such as after a configuration data change)
14 IBM AIX Continuous Availability Features

http://www-1.ibm.com/support/docview.wss?uid=isg3T1000678
http://www-05.ibm.com/cz/power6/files/zpravy/WhitePaper_POWER6_availabilty.PDF

The SRC is useful if you want a common way to start, stop, and collect status information
about processes. You can use these options in SMIT via smitty src.

2.1.9 PCI hot plug management

PCI hot plug management consists of user (software) tools that allow you to manage hot plug
connectors, also known as dynamic reconfigurable connectors, or slots. A connector defines
the type of slot, for example, PCI. A slot has a unique identifier within the managed system.

Dynamic reconfiguration is the ability of the system to adapt to changes in the hardware and
firmware configuration while it is still running. PCI Hot Plug Support for PCI Adapters is a
specific subset of the dynamic reconfiguration function that provides the capability of adding,
removing, and replacing PCI adapter cards while the host system is running and without
interrupting other adapters in the system. You can also display information about PCI hot plug
slots.

You can insert a new PCI hot plug adapter into an available PCI slot while the operating
system is running. This can be another adapter of the same type that is currently installed, or
of a different type of PCI adapter. New resources are made available to the operating system
and applications without having to restart the operating system. The PCI hot plug manager
interface can be accessed by executing the following command:

smitty devdrpci

Additional detailed information about PCI hot plug management is available in AIX 5L System
Management Guide: Operating System and Devices, SC23-5204, which is downloadable
from the following site:

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.baseadmn/doc/basead
mndita/baseadmndita.pdf

2.1.10 Reliable Scalable Cluster Technology

Reliable Scalable Cluster Technology (RSCT) is a set of software components that together
provide a comprehensive clustering environment for AIX and Linux. RSCT is the
infrastructure used by a variety of IBM products to provide clusters with improved system
availability, scalability, and ease of use. RSCT includes the following components:

� Resource Monitoring and Control (ctrmc) subsystem
� RSCT core resource managers (ctcas)
� RSCT cluster security services (ctsec)
� Topology Services subsystem (cthatsd)
� Group Services subsystem (cthagsd)

These components are explained in more detail here.

Resource Monitoring and Control subsystem
The Resource Monitoring and Control (RMC) subsystem is the scalable backbone of RSCT
which provides a generalized framework for managing resources within a single system or a
cluster. Its generalized framework is used by cluster management tools to monitor, query,
modify, and control cluster resources.

RMC provides a single monitoring and management infrastructure for standalone servers
(single operating system image), RSCT peer domains (where the infrastructure is used by the
configuration resource manager), and management domains (where the infrastructure is
used by the Hardware Management Console (HMC) and Cluster Systems Management
(CSM)).
Chapter 2. AIX continuous availability features 15

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.baseadmn/doc/baseadmndita/baseadmndita.pdf
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.baseadmn/doc/baseadmndita/baseadmndita.pdf

When used on a standalone server (single operating system), RMC enables you to monitor
and manage the resources of that machine. However, when a group of machines that are
each running RMC are clustered together (into management domains or peer domains), the
RMC framework allows a process on any node to perform an operation on one or more
resources on any other node in the domain.

A resource is the fundamental concept of the RMC architecture; it is an instance of a physical
or logical entity that provides services to some other component of the system. Examples of
resources include lv01 on node 10; Ethernet device en0 on node 14; IP address 9.117.7.21;
and so on. A set of resources that have similar characteristics (in terms of services provided,
configuration parameters, and so on) is called a resource class. The resources and resource
class abstractions are defined by a resource manager.

RMC is part of standard AIX V5 and V6 installation, and provides comprehensive monitoring
when configured and activated. The idea behind the RSCT/RMC implementation is to provide
a high availability infrastructure for managing resources in a standalone system, as well as in
a cluster (peer domain or management domain).

RMC can be configured to monitor any event that may occur on your system, and you can
provide a response program (script or binary). For example, if a particular file system is
always filling up, you can configure the RMC to raise an event when the file system grows to
a specified utilization threshold. Your response program (script) might increase the size of the
file system or archive old data, but after the user-specified response script is executed and
the condition recovers (that is, file system utilization falls below a specified reset value), then
the event is cleared and RMC returns to monitor mode.

A resource manager is a process that maps resource and resource class abstractions into
actual calls and commands for one or more specific types of resources. A resource manager
runs as a standalone daemon and contains definitions of all resource classes that the
resource manager supports. These definitions include a description of all attributes, actions,
and other characteristics of a resource class. RSCT provides a core set of resource
managers for managing base resources on single systems and across clusters.

RSCT core resource managers
A resource manager is a software layer between a resource (a hardware or software entity
that provides services to some other component) and RMC. As mentioned, a resource
manager maps programmatic abstractions in RMC into the actual calls and commands of a
resource.

RSCT provides a core set of resource managers. Resource managers provide low-level
instrumentation and control, or act as a foundation for management applications.

These are the core resource managers of RSCT:

� Audit log resource manager
� Configuration resource manager
� Event resource manager
� File system resource manager
� Host resource manager
� Sensor resource manager

RSCT cluster security services
Cluster Security Services (ctsec) is the security infrastructure that is used by RMC to
authenticate a node within the cluster, verifying that the node is who it says it is.
16 IBM AIX Continuous Availability Features

Cluster Security Services uses credential-based authentication that enables:

� A client process to present information to the server that owns the resource to be
accessed in a way that cannot be imitated.

� A server process to clearly identify the client and the validity of the information.
� Credential-based authentication uses a third party that both the client and the server trust.

Group Services and Topology Services subsystems
Group Services and Topology Services, although included in RSCT, are not used in a
management domain structure. These two components are used in high availability clusters
for complete high availability and disaster recovery solutions, such as High-Availability
Cluster Multi-Processing (HACMP), providing node and process coordination and node and
network failure detection.

These services are often referred to as hats and hags: high availability Topology Services
daemon (hatsd) and Group Services daemon (hagsd).

Additional detailed information about IBM Reliable Scalable Clustering Technology is
available in Reliable Scalable Cluster Technology: Administration Guide, SA22-7889.

2.1.11 Dual IBM Virtual I/O Server

Dual IBM Virtual I/O Server (VIOS) provides the capability for a single physical I/O adapter to
be used by multiple logical partitions of the same server, thus allowing consolidation of I/O
resources and minimizing the number of I/O adapters required. The IBM Virtual I/O Server is
the link between the virtual resources and physical resources. It is a specialized partition that
owns the physical I/O resources, and runs in a special partition that cannot be used for
execution of application code. It mainly provides two functions:

� Serves virtual SCSI devices to client partitions
� Provides a Shared Ethernet Adapter for VLANs

While redundancy can be built into the VIOS itself with the use of standard AIX tools like
multipath I/O (MPIO) and AIX Logical Volume Manager (LVM) RAID Options for storage
devices, and Ethernet link aggregation for network devices, the Virtual I/O Server must be
available with respect to the client. Planned outages (such as software updates) and
unplanned outages (such as hardware outages) challenge 24x7 availability. In case of a
crash of the Virtual I/O Server, the client partitions will see I/O errors and not be able to
access the adapters and devices that are hosted by the Virtual I/O Server.

The Virtual I/O Server itself can be made redundant by running a second instance in another
partition. When running two instances of the Virtual I/O Server, you can use LVM mirroring,
multipath I/O, Ethernet link aggregation, or multipath routing with dead gateway detection in
the client partition to provide highly available access to virtual resources hosted in separate
Virtual I/O Server partitions. Many configurations are possible; they depend on the available
hardware resources as well as on your requirements.

For example, with the availability of MPIO on the client, each VIOS can present a virtual SCSI
device that is physically connected to the same physical disk. This achieves redundancy for
the VIOS itself and for any adapter, switch, or device that is used between the VIOS and the
disk. With the use of logical volume mirroring on the client, each VIOS can present a virtual
SCSI device that is physically connected to a different disk and then used in a normal AIX

Note: This is not to be confused with authorization (granting or denying access to
resources), which is handled by RMC.
Chapter 2. AIX continuous availability features 17

mirrored volume group on the client. This achieves a potentially greater level of reliability by
providing redundancy. Client volume group mirroring is also required when a VIOS logical
volume is used as a virtual SCSI device on the Client. In this case, the virtual SCSI devices
are associated with different SCSI disks, each controlled by one of the two VIOS.

As an example of network high availability, Shared Ethernet Adapter (SEA) failover offers
Ethernet redundancy to the client at the virtual level. The client gets one standard virtual
Ethernet adapter hosted by two VIO servers. The two Virtual I/O servers use a control
channel to determine which of them is supplying the Ethernet service to the client. Through
this active monitoring between the two VIOS, failure of either will result in the remaining VIOS
taking control of the Ethernet service for the client. The client has no special protocol or
software configured, and uses the virtual Ethernet adapter as though it was hosted by only
one VIOS.

2.1.12 Special Uncorrectable Error handling

Although a rare occurrence, an uncorrectable data error can occur in memory or a cache,
despite all precautions built into the server. In older generations of servers (prior to IBM
POWER4™ processor-based offerings), this type of error would eventually result in a system
crash. The IBM System p and System i offerings extend the POWER4 technology design and
include techniques for handling these types of errors.

On these servers, when an uncorrectable error is identified at one of the many checkers
strategically deployed throughout the system's central electronic complex, the detecting
hardware modifies the ECC word associated with the data, creating a special ECC code. This
code indicates that an uncorrectable error has been identified at the data source and that the
data in the “standard” ECC word is no longer valid. The check hardware also signals the
Service Processor and identifies the source of the error. The Service Processor then takes
appropriate action to handle the error. This technique is called Special Uncorrectable Error
(SUE) handling.

Simply detecting an error does not automatically cause termination of a system or partition. In
many cases, an uncorrectable error will cause generation of a synchronous machine check
interrupt. The machine check interrupt occurs when a processor tries to load the bad data.
The firmware provides a pointer to the instruction that referred to the corrupt data, the system
continues to operate normally, and the hardware observes the use of the data.

The system is designed to mitigate the problem using a number of approaches. For example,
if the data is never actually used but is simply overwritten, then the error condition can safely
be voided and the system will continue to operate normally.

For AIX V5.2 or greater, if the data is actually referenced for use by a process, then the
operating system is informed of the error. The operating system will terminate only the
specific user process associated with the corrupt data.

New with AIX V6.1
The POWER6 processor adds the ability to report the faulting memory address on a SUE
Machine Check. This hardware characteristic, combined with the AIX V6.1 recovery
framework, expands the cases in which AIX will recover from an SUE to include some
instances when the error occurs in kernel mode.

Specifically, if an SUE occurs inside one of the copyin() and copyout() family of kernel
services, these functions will return an error code and allow the system to continue operating
(in contrast, on a POWER4 or POWER5 system, AIX would crash). The new SUE feature
integrates the kernel mode handling of SUEs with the FRR recovery framework.
18 IBM AIX Continuous Availability Features

2.1.13 Automated system hang recovery

Automatic system hang recovery with error detection and fix capabilities are key features of
the automated system management of AIX which can detect the condition that high priority
processes are monopolizing system resources and prohibiting normal execution. AIX offers
system administrators a variety of customizable solutions to remedy the system hang
condition.

2.1.14 Recovery framework

Beginning with AIX V6.1, the kernel can recover from errors in selected routines, thus
avoiding an unplanned system outage. The kernel recovery framework improves system
availability. The framework allows continued system operation after some unexpected kernel
errors.

Kernel recovery
Kernel recovery in AIX V6.1 is disabled by default. This is because the set of errors that can
be recovered is limited in AIX V6.1, and kernel recovery, when enabled, requires an extra 4 K
page of memory per thread. To enable, disable, or show kernel recovery state, use the SMIT
path Problem Determination→ Kernel Recovery, or use the smitty krecovery command.

You can show the current and next boot states, and also enable or disable the kernel
recovery framework at the next boot. In order for the change to become fully active, you must
run the /usr/sbin/bosboot command after changing the kernel recovery state, and then
reboot the operating system.

During a kernel recovery action, the system might pause for a short time, generally less than
two seconds. The following actions occur immediately after a kernel recovery action:

1. The system console displays the message saying that a kernel error recovery action has
occurred.

2. AIX adds an entry into the error log.
3. AIX may generate a live dump.
4. You can send the error log data and live dump data to IBM for service (similar to sending

data from a full system termination).

2.2 System reliability

Over the years the AIX operating system has included many reliability features inspired by
IBM technology, and it now includes even more ground breaking technologies that add to AIX
reliability. Some of these include kernel support for POWER6 storage keys, Concurrent AIX
Update, dynamic tracing and enhanced software first failure data capture, just to mention a
few new features.

Note: The default kernel recovery framework setting is disabled. This means an affirmative
action must be taken via SMIT or the raso command to enable recovery. When recovery is
not enabled, the behavior will be the same as on AIX 5.3.

Note: Some functions might be lost after a kernel recovery, but the operating system
remains in a stable state. If necessary, shut down and restart your system to restore the
lost functions.
Chapter 2. AIX continuous availability features 19

2.2.1 Error checking

Run-Time Error Checking
The Run-Time Error Checking (RTEC) facility provides service personnel with a method to
manipulate debug capabilities that are already built into product binaries. RTEC provides
powerful first failure data capture and second failure data capture error detection features.

The basic RTEC framework is introduced in AIX V5.3 TL3, and has now been extended with
additional features. RTEC features include the Consistency Checker and Xmalloc Debug
features. Features are generally tunable with the errctrl command.

Some features also have attributes or commands specific to a given subsystem, such as the
sodebug command associated with new socket debugging capabilities. The enhanced socket
debugging facilities are described in the AIX publications, which can be found online at the
following site:

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp

Kernel stack overflow detection
Beginning with the AIX V5.3 TL5 package, the kernel provides enhanced logic to detect stack
overflows. All running AIX code maintains an area of memory called a stack, which is used to
store data necessary for the execution of the code. As the code runs, this stack grows and
shrinks. It is possible for a stack to grow beyond its maximum size and overwrite other data.

These problems can be difficult to service. AIX V5.3 TL5 introduces an asynchronous
run-time error checking capability to examine if certain kernel stacks have overflowed. The
default action upon overflow detection is to log an entry in the AIX error log. The stack
overflow run-time error checking feature is controlled by the ml.stack_overflow component.

AIX V6.1 improves kernel stack overflow detection so that some stacks are guarded with a
synchronous overflow detection capability. Additionally, when the recovery framework is
enabled, some kernel stack overflows that previously were fatal are now fully recoverable.

Kernel no-execute protection
Also introduced in the AIX V5.3 TL5 package, no-execute protection is set for various kernel
data areas that should never be treated as executable code. This exploits the page-level
execution enable/disable hardware feature. The benefit is immediate detection if erroneous
device driver or kernel code inadvertently make a stray branch onto one of these pages.
Previously the behavior would likely lead to a crash, but was undefined.

This enhancement improves kernel reliability and serviceability by catching attempts to
execute invalid addresses immediately, before they have a chance to cause further damage
or create a difficult-to-debug secondary failure. This feature is largely transparent to the user,
because most of the data areas being protected should clearly be non-executable.

2.2.2 Extended Error Handling

In 2001, IBM introduced a methodology that uses a combination of system firmware and
Extended Error Handling (EEH) device drivers that allow recovery from intermittent PCI bus
errors. This approach works by recovering and resetting the adapter, thereby initiating system
recovery for a permanent PCI bus error. Rather than failing immediately, the faulty device is
“frozen” and restarted, preventing a machine check. POWER6 technology extends this
capability to PCIe bus errors.
20 IBM AIX Continuous Availability Features

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp

2.2.3 Paging space verification

Finding the root cause of system crashes, hangs or other symptoms when that root cause is
data corruption can be difficult, because the symptoms can appear far downstream from
where the corruption was observed. The page space verification design is intended to
improve First Failure Data Capture (FFDC) of problems caused by paging space data
corruption by checking that the data read in from paging space matches the data that was
written out.

When a page is paged out, a checksum will be computed on the data in the page and saved
in a pinned array associated with the paging device. If and when it is paged back in, a new
checksum will be computed on the data that is read in from paging space and compared to
the value in the array. If the values do not match, the kernel will log an error and halt (if the
error occurred in system memory), or send an exception to the application (if it occurred in
user memory).

Paging space verification can be enabled or disabled, on a per-paging space basis, by using
the mkps and chps commands. The details of these commands can be found in their
corresponding AIX man pages.

2.2.4 Storage keys

Most application programmers have experienced the inadvertent memory overlay problem
where a piece of code accidentally wrote to a memory location that is not part of the
component’s memory domain. The new hardware feature, called storage protection keys, and
referred to as storage keys in this paper, assists application programmers in locating these
inadvertent memory overlays.

Memory overlays and addressing errors are among the most difficult problems to diagnose
and service. The problem is compounded by growing software size and increased
complexity. Under AIX, a large global address space is shared among a variety of software
components. This creates a serviceability issue for both applications and the AIX kernel.

The AIX 64-bit kernel makes extensive use of a large flat address space by design. This is
important in order to avoid costly MMU operations on POWER processors. Although this
design does produce a significant performance advantage, it also adds reliability, availability
and serviceability (RAS) costs. Large 64-bit applications, such as DB2®, use a global
address space for similar reasons and also face issues with memory overlays.

Storage keys were introduced in PowerPC® architecture to provide memory isolation, while
still permitting software to maintain a flat address space. The concept was adopted from the
System z™ and IBM 390 systems. Storage keys allow an address space to be assigned
context-specific protection. Access to the memory regions can be limited to prevent, and
catch, illegal storage references.

A new CPU facility, Authority Mask Register (AMR), has been added to define the key set that
the CPU has access to. The AMR is implemented as bit pairs vector indexed by key number,
with distinct bits to control read and write access for each key. The key protection is in
addition to the existing page protection bits. For any load or store process, the CPU retrieves
the memory key assigned to the targeted page during the translation process. The key
number is used to select the bit pair in the AMR that defines if an access is permitted.

A data storage interrupt occurs when this check fails. The AMR is a per-context register that
can be updated efficiently. The TLB/ERAT contains storage key values for each virtual page.
This allows AMR updates to be efficient, since they do not require TLB/ERAT invalidation.
Chapter 2. AIX continuous availability features 21

The PowerPC hardware gives software a mechanism to efficiently change storage
accessibility.

Storage-keys are exploited in both kernel-mode and user-mode APIs. In kernel-mode,
storage-key support is known as kernel keys.

The APIs that manage hardware keys in user mode refer to the functionality as user keys.
User key support is primarily being provided as a reliability, availability and serviceability
(RAS) feature for applications. The first major application software to implement user keys is
DB2. In DB2, user keys are used for two purposes. Their primary purpose is to protect the
DB2 core from errors in user-defined functions (UDFs). The second use is as a debug tool to
prevent and diagnose internal memory overlay errors. But this functionality is available to any
application.

DB2 provides a UDF facility where customers can add extra code to the database. There are
two modes that UDFs can run under, fenced and unfenced, as explained here:

� In fenced mode, UDFs are isolated from the database by execution under a separate
process. Shared memory is used to communicate between the database and UDF
process. Fenced mode does have a significant performance penalty, because a context
switch is required to execute the UDF.

� An unfenced mode is also provided, where the UDF is loaded directly into the DB2
address space. Unfenced mode greatly improves performance, but introduces a
significant RAS exposure.

Although DB2 recommends fenced mode, many customers use unfenced mode for improved
performance. Use of user keys must provide significant isolation between the database and
UDFs with low overhead.

User keys work with application programs. They are a virtualization of the PowerPC storage
key hardware. User keys can be added and removed from a user space AMR, and a single
user key can be assigned to an application’s memory pages. Management and abstraction of
user keys is left to application developers. The storage protection keys application
programming interface (API) for user space applications is available in AIX V5.3 TL6 and is
supported on all IBM System p POWER6 processor-based servers running this technology
level.

Kernel keys are added to AIX as an important Reliability, Availability, and Serviceability (RAS)
function. They provide a Reliability function by limiting the damage that one software
component can do to other parts of the system. They will prevent kernel extensions from
damaging core kernel components, and provide isolation between kernel extension classes.

Kernel keys will also help to provide significant Availability function by helping prevent error
propagation—and this will be a key feature as AIX starts to implement kernel error recovery
handlers. Serviceability is enhanced by detecting memory addressing errors closer to their
origin. Kernel keys allow many random overlays to be detected when the error occurs, rather
than when the corrupted memory is used.

With kernel key support, the AIX kernel introduces the concept of kernel domains and private
memory access. Kernel domains are component data groups that are created to segregate
sections of the kernel and kernel extensions from each other. Hardware protection of kernel
memory domains is provided and enforced. Also, global storage heaps are separated and
protected. This keeps heap corruption errors within kernel domains. There are also private
memory keys that allow memory objects to be accessed only by authorized components.
Besides the Reliability, Availability and Serviceability benefits, private memory keys are a tool
to enforce data encapsulation.
22 IBM AIX Continuous Availability Features

Kernel keys are provided in AIX V6.1. Kernel keys will be a differentiator in the UNIX market
place. It is expected that AIX will be the only UNIX operating system exploiting this type of
memory protection.

2.3 System serviceability

IBM has implemented system serviceability in AIX to make it easier to perform problem
determination, corrective maintenance, or preventive maintenance on a system.

2.3.1 Advanced First Failure Data Capture features

First Failure Data Capture (FFDC) is a serviceability technique whereby a program that
detects an error preserves all the data required for subsequent analysis and resolution of the
problem. The intent is to eliminate the need to wait for or to force a second occurrence of the
error to allow specially-applied traps or traces to gather the data required to diagnose the
problem.

The AIX V5.3 TL3 package introduced these new First Failure Data Capture (FFDC)
capabilities. The set of FFDC features is further expanded in AIX V5.3 TL5 and AIX V6.1.
These features are described in the sections that follow, and include:

� Lightweight Memory Trace (LMT)
� Run-Time Error Checking (RTEC)
� Component Trace (CT)
� Live Dump

These features are enabled by default at levels that provide valuable FFDC information with
minimal performance impacts. The advanced FFDC features can be individually manipulated.
Additionally, a SMIT dialog has been provided as a convenient way to persistently (across
reboots) disable or enable the features through a single command. To enable or disable all
four advanced FFDC features, enter the following command:

smitty ffdc

This specifies whether the advanced memory tracing, live dump, and error checking facilities
are enabled or disabled. Note that disabling these features reduces system Reliability,
Availability, and Serviceability.

2.3.2 Traditional system dump

The system dump facility provides a mechanism to capture a snapshot of the operating
system state. A system dump collects the system's memory contents and provides information
about the AIX kernel that can be used later for expert analysis. After the preserved image is
written to the dump device, the system will be booted and can be returned to production if
desired. The system generates a system dump when a severe error occurs, that is, at the
time of the system crash.

Note: You must run the /usr/sbin/bosboot command after changing the state of the
Advanced First Failure Data Capture Features, and then reboot the operating system in
order for the changes to become fully active. Some changes will not fully take effect until
the next boot.
Chapter 2. AIX continuous availability features 23

System dumps can also be user-initiated by root users. System administrators and
programmers can generate a dump and analyze its contents when debugging new
applications. The system dump is typically submitted to IBM support for analysis, along with
other system configuration information. Typically, an AIX system dump includes all of the
information needed to determine the nature of the problem. The dump contains:

� Operating system (kernel) code and kernel data
� Kernel data about the current running application on each CPU
� Most of the kernel extensions code and data for all running kernel extensions

AIX V6.1 also provides additional features to reduce the size of dumps and the time needed
to create a dump. It is possible to control which components participate in the system dump. It
may be desirable to exclude some components from the system dump in order to decrease
the dump size.

The dumpctrl command obtains information about which components are registered for a
system dump. If a problem is being diagnosed, and multiple system dumps are needed,
components that are not needed can be excluded from system dumps until the problem is
solved. When the problem is solved, the system administrator should again enable all system
dump components.

AIX V6.1 provides also a live dump capability to allow failure data to be dumped without
taking down the entire system. A live dump will most likely involve just a few system
components. For example, prior to AIX V6.1, if an inconsistency were detected by a kernel
component such as a device driver, the usual approach is to bring down and dump the entire
system.

System dumps can now be copied to DVD media. You can also use DVD as a primary or
secondary dump device. Note that the snap command can use a DVD as source, as well as
an output device.

2.3.3 Firmware-assisted system dump

Firmware-assisted dump improves the reliability of the traditional system dump by minimizing
work done by the failing operating system.The idea is to freeze memory and reboot the
system prior to dumping the memory to disk. Firmware-assisted system dump means an AIX
dump assisted by firmware, which is taken when the partition is restarting. The firmware is
involved to preserve memory across the reboot, and eventually to save parts of memory and
processor registers.

Selective memory dump is a firmware-assisted system dump that is triggered by (or uses) the
AIX instance. Full memory dump is a firmware-assisted system dump that dumps all partition
memory without any interaction with the AIX instance that is failing. Both selective-memory
dump and traditional system dump require interaction with the failing AIX instance to
complete the dump.

Note: As of AIX V6.1, traditional system dumps are always compressed to further reduce
size.

Important: In AIX V6.1, traditional dump remains the default method for performing a
system dump in all configurations.

Firmware-assisted system dump should only be used if you are directed to do so by IBM
Service during problem determination.
24 IBM AIX Continuous Availability Features

As system memory increases, so does the time required to complete a dump. For this reason,
a secondary goal of the firmware-assisted system dump feature is to reduce the overall
system outage time by taking the dump in parallel with the system restart.

In order to allow a firmware-assisted system dump, AIX must perform configuration
operations both at startup and at the dump configuration:

1. AIX checks the memory size at system startup to determine whether there is enough
available to enable firmware-assisted system dump.

2. AIX retrieves the firmware-assisted system dump property in the device tree to determine
whether firmware-assisted system dump is supported by the platform.

3. AIX verifies that the administrator has enabled firmware-assisted dump.

If all conditions for a firmware-assisted system dump are validated, AIX reserves a scratch
area and performs the firmware-assisted system dump configuration operations. The scratch
area is not released unless the administrator explicitly reconfigures a traditional system
dump configuration. Verification is not performed when a dynamic reconfiguration operation
modifies the memory size.

AIX can switch from firmware-assisted system dump to traditional system dump at dump time
because traditional system dump is always initialized. There are two cases of traditional
system dump: a user-specified traditional system dump configuration, and a traditional
system dump that is initialized just in case AIX cannot start a firmware-assisted system dump.

AIX can be configured to choose the type of dump between firmware-assisted system dump
and traditional system dump. When the configuration of the dump type is changed from
firmware-assisted system dump to traditional system, the new configuration is effective
immediately. When the configuration of the dump type is changed from traditional system
dump to firmware-assisted system dump, the new configuration is only effective after a
reboot.

When firmware-assisted system dump is supported by the platform and by AIX, and is
activated by the administrator, selective memory dump is the default dump configuration. Full
memory dump is not allowed by default. In case of firmware-assisted system dump
configuration, the administrator can configure AIX to allow a full memory dump. If allowed but
not required, the full memory dump is only performed when AIX cannot initiate a selective
memory dump.

The administrator can configure AIX to require a full memory dump even if AIX can initiate a
selective memory dump. In both cases, where full memory dump is either allowed or required,
the administrator can start a full memory dump from AIX or from the HMC menus.

2.3.4 Live dump and component dump

Component dump allows the user to request that one or more components (their associated
memory and kernel data structures) be dumped. When combined with the live dump
functionality, component dump functionality allows components to be dumped, without
bringing down the entire system. When combined with the system dump functionality, this
allows you to limit the size of the system dump.

Note: Firmware-assisted system dump requires a POWER6 system with at least 4 GB of
memory assigned to the partition. Firmware-assisted dump does not support all disk
adapters. In addition, certain multi-path configurations are not supported.
Chapter 2. AIX continuous availability features 25

Live dumps are small dumps that do not require a system restart. Only components that are
registered for live dumps, and are requested to be included, are dumped. Use the dumpctrl
command to obtain information about which components are registered for live dumps.

Live dumps can be initiated by software programs or by users with root user authority.
Software programs use live dumps as part of recovery actions, or when the runtime
error-checking value for the error disposition is ERROR_LIVE_DUMP. If you have root user
authority, you can initiate live dumps when a subsystem does not respond or behaves
erroneously. For more information about how to initiate and manage live dumps, see the
livedumpstart and dumpctrl commands in AIX V6.1 command reference manuals, which
are downloadable at the following site:

http://publib.boulder.ibm.com/infocenter/pseries/v6r1/index.jsp

Unlike system dumps, which are written to a dedicated dump device, live dumps are written to
the file system. By default, live dumps are placed in the /var/adm/ras/livedump directory. The
directory can be changed by using the dumpctrl command.

In AIX V6.1, only serialized live dumps are available. A serialized live dump causes a system
to be frozen or suspended when data is being dumped. The freeze is done by stopping all
processors, except the processor running the dump. When the system is frozen, the data is
copied to the live dump heap in pinned kernel memory. The data is then written to the file
system, but only after the system is unfrozen. Live dump usually freezes the system for no
more than 100 ms.

The heapsz attribute (heap size) can be set to zero (0), meaning that at dump initialization
time, the system calculates the live dump heap size based on the amount of real memory,
which is the minimum of 16 MB or 1/64 the size of real memory (whichever is smaller).

Duplicate live dumps that occur rapidly are eliminated to prevent system overload and to save
file system space. Eliminating duplicate dumps requires periodic (once every 5 minutes)
scans of the live dump repository through a cron job. Duplicate elimination can be stopped via
the dumpctrl command.

Each live dump has a data priority. A live dump of info priority is for informational purposes,
and a live dump of critical priority is used to debug a problem. Info priority dumps can be
deleted to make room for critical priority dumps.

You can enable or disable all live dumps by using the dumpctrl ldmpon/ldmpoff command, or
by using the SMIT fastpath:

smitty livedump

2.3.5 The dumpctrl command

There is also the need to modify component, live, and system dump properties from one
command. To achieve this, the dumpctrl command has been implemented in AIX V6.1. The
dumpctrl command is used to query and modify global system and live dump properties, as
well as per-component system and live dump properties, where appropriate.

Note: Persistent options can be used to set state on further boots.

Note: Live dumps are compressed and must be uncompressed with the dmpumcompress
command.
26 IBM AIX Continuous Availability Features

http://publib.boulder.ibm.com/infocenter/pseries/v6r1/index.jsp

2.3.6 Parallel dump

An AIX system generates a system dump when a severe unrecoverable error occurs. System
dumps can also be user-initiated by users with root user authority. A system dump creates a
picture of your system's memory contents. However, systems have an increasingly large
amount of memory and CPUs, and larger systems experience longer dump times. For this
reason a new feature, parallel dump, was introduced in AIX V5.3 TL5.

A new optimized compressed dump format has been introduced in AIX V5.3. The dump file
extension for this new format is .BZ. In this new compressed dump file, the blocks are
compressed and unordered; this unordered feature allows multiple processors to dump
parallel sub-areas of the system. Parallel dumps are produced automatically when supported
by the AIX release.

In order to increase dump reliability, a new -S checking option, to be used with the -L option
for the statistical information on the most recent dump, is also added to the sysdumpdev
command. The -S option scans a specific dump device and sees whether it contains a valid
compressed dump.

sysdumpdev -L -S <Device>

The dump must be from an AIX release with parallel dump support. This flag can be used
only with the -L flag. Additional options can be found and modified in SMIT via smitty dump.

2.3.7 Minidump

The minidump, introduced in AIX V5.3 TL3, is a small compressed dump that is stored to
NVRAM when the system crashes or a dump is initiated, and is then written to the error log on
reboot. It can be used to see some of the system state and do some debugging if a full dump
is not available. It can also be used to obtain a quick snapshot of a crash without having to
transfer the entire dump from the crashed system.

Minidumps will show up as error log entries with a label of MINIDUMP_LOG and a description of
COMPRESSED MINIMAL DUMP. To filter the minidump entries in the error log, you can use the
errpt command with the –J flag (errpt [–a] –J MINIDUMP_LOG). Minidumps in the error log
can be extracted, decompressed, and formatted using the mdmprpt command, as shown:

mdmprpt [-l seq_no] [-i filename] [-r]

More detailed information about minidump is available at the following site:

http://igets3.fishkill.ibm.com/DCF/isg/isgintra.nsf/all/T1000676?OpenDocument&Highlight=0,m
inidump

2.3.8 Trace (system trace)

The AIX trace facility is a powerful system observation tool. The trace facility captures a
sequential flow of time-stamped system events, thus providing a fine level of detail of system
activity. Events are shown in time sequence and in the context of other events.

Important: The new file format for parallel dump is not readable with uncompress and zcat
commands.

The new dmpuncompress command must be used instead.
Chapter 2. AIX continuous availability features 27

http://igets3.fishkill.ibm.com/DCF/isg/isgintra.nsf/all/T1000676?OpenDocument&Highlight=0,minidump

Trace is a valuable tool for observing system and application execution. Where other tools
provide high level statistics such as CPU utilization or I/O wait time, the trace facility is useful
in expanding the information to understand the who, when, how, and why of an event.

Single thread trace
In prior versions of AIX, system trace would trace the entire system. In AIX V5.3, the system
trace facility has been enhanced by new flags. This enables the trace to run only for specified
processes, threads, or programs. The system trace can be used to trace the processor
utilization register (PURR) to provide more accurate event timings in a shared processor
partition environment.

Administrative control of the user trace buffers
Also, in previous versions of AIX, the trace buffer size for a regular user is restricted to a
maximum of 1 MB. Version 5.3 allows the system group users to set the trace buffer size
either through a new command, trcctl, or using a new SMIT menu called Manage Trace:

smitty trace→ Manage Trace

To check the actual trace subsystem properties, use the trcctl command, as shown in
Example 2-2.

Example 2-2 Trace characteristics

lpar15root:/root#trcctl

Default Buffer Size: 262144
Default Log File Size: 2621440
Default Log File: /var/adm/ras/trcfile
Non-Root User Buffer Size Maximum: 1048576
Default Components Directory: /var/adm/ras/trc_ct
Default LMT Log Dir: /var/adm/ras/mtrcdir

To list all trace event groups, you can use the following command:

trcevgrp -l

There are several trace-related tools which are used for various operating system
components:

� CPU monitoring tprof, curt, splat, trace, trcrpt

� Memory monitoring trace, trcrpt

� I/O subsystem trace, trcrpt

� Network iptrace, ipreport, trace, trcrpt

� Processes and threads tprof, pprof, trace, trcrpt

Trace can be used in two ways: interactively, or asynchronously, as explained here:

� Interactively

The following sequence of commands runs an interactive trace on the program myprog
and ends the trace:

trace -j30D,30E -o trace.file
->!myprog
->q
28 IBM AIX Continuous Availability Features

� Asynchronously

The following sequence of commands runs an asynchronous trace on the program
myprog and ends the trace:

trace -a -j30D,30E
myprog
trcstop

� You can format the trace file with the following command:

trcrpt -o output.file

Additional details about these trace options are available in IBM AIX Version 6.1 Differences
Guide, SC27-7559.

POSIX trace
AIX Version 6 implements the POSIX trace system, which supports tracing of user
applications via a standardized set of interfaces. The POSIX tracing facilities allow a process
to select a set of trace event types, activate a trace stream of the selected trace events as
they occur in the flow of execution, and retrieve the recorded trace events. Like system trace,
POSIX trace is also dependent upon precompiled-in trace hooks in the application being
instrumented.

Additional details about these trace options are available in IBM AIX Version 6.1 Differences
Guide, SC27-7559.

Iptrace
The iptrace daemon provides interface-level packet tracing for Internet protocols. This
daemon records Internet packets received from configured interfaces. Command flags
provide a filter so that the daemon traces only packets that meet specific criteria. Packets are
traced only between the local host on which the iptrace daemon is invoked and the remote
host.

If the iptrace process was started from a command line without the System Resource
Controller (SRC), it must be stopped with the kill -15 command. The kernel extension
loaded by the iptrace daemon remains active in memory if iptrace is stopped any other way.

The LogFile parameter specifies the name of a file to which the results of the iptrace
command are sent. To format this file, run the ipreport command.

The ipreport command may display the message TRACING DROPPED xxxx PACKETS. This
count of dropped packets indicates only the number of packets that the iptrace command
was unable to grab because of a large packet whose size exceeded the socket-receive buffer
size. The message does not mean that the packets are being dropped by the system.

2.3.9 Component Trace facility

The Component Trace (CT) facility allows the capture of information about a specific kernel
component, kernel extension, or device driver. Component Trace is an important FFDC and
SFDC tool available to the kernel, kernel extensions, and device drivers. The CT facility
allows a component to capture trace events to aid in both debugging and system analysis,
and provide focused trace data on larger server systems.

CT provides system trace information for specific system components. This information
allows service personnel to access component state information through either in-memory
trace buffers or through traditional AIX system trace. Component Trace is enabled by default.
Chapter 2. AIX continuous availability features 29

Component Trace uses mechanisms similar to system trace. Existing TRCHKxx and
TRCGEN macros can be replaced with Component Trace macros to trace into system trace
buffers or memory trace mode private buffers. These macros are CT_HOOKx and CT_GEN,
located in /usr/include/sys/ras_trace.h. Once recorded, Component Trace events can be
retrieved by using the ctctrl command. Extraction using the ctctrl command is relevant
only to in-memory tracing. Component Trace events can also be present in a system trace.
The trcrpt command is used in both cases to process the events.

2.3.10 Lightweight Memory Trace (LMT)

Lightweight Memory Trace is an efficient, default-on per CPU, in-memory kernel trace. It is
built upon the trace function that already exists in kernel subsystems, and is of most use for
those who have AIX source-code access or a deep understanding of AIX internals.

LMT provides system trace information for First Failure Data Capture (FFDC). It is a constant
kernel trace mechanism that records software events occurring during system operation. The
system activates LMT at initialization, then tracing runs continuously. Recorded events are
saved into per-processor memory trace buffers. There are two memory trace buffers for each
processor—one to record common events, and one to record rare events. The memory trace
buffers can be extracted from system dumps accessed on a live system by service personnel.
The trace records look like traditional AIX system trace records. The extracted memory trace
buffers can be viewed with the trcrpt command, with formatting as defined in the /etc/trcfmt
file.

For further details about LMT, refer to 3.2, “Lightweight memory trace” on page 57.

2.3.11 ProbeVue

AIX V6.1 provides a new dynamic tracing facility that can help to debug complex system or
application code. This dynamic tracing facility is introduced via a new tracing command,
probevue, that allows a developer or system administrator to dynamically insert trace probe
points in existing code without having to recompile the code. ProbeVue is described in detail
in 3.8, “ProbeVue” on page 111. To show or change the ProbeVue configuration, use the
following command:

smitty probevue

2.3.12 Error logging

Troubleshooting system problems is an important and challenging task for system
administrators. AIX provides an error logging facility for the runtime recording of hardware
and software failures in an error log. This error log can be used for informational purposes, or
for fault detection and corrective actions.

The purpose of error logging is to collect and record data related to a failure so that it can be
subsequently analyzed to determine the cause of the problem. The information recorded in
the error log enables the customer and the service provider to rapidly isolate problems,
retrieve failure data, and take corrective action.

Error logging is automatically started by the rc.boot script during system initialization. Error
logging is automatically stopped by the shutdown script during system shutdown.

The error logging process begins when the AIX operating system module detects an error.
The error-detecting segment of code then sends error information to either the errsave kernel
30 IBM AIX Continuous Availability Features

service and errlast kernel service for a pending system crash, or to the errlog subroutine to
log an application error, where the information is, in turn, written to the /dev/error special file.

The errlast kernel service preserves the last error record in the NVRAM. Therefore, in the
event of a system crash, the last logged error is not lost. This process then adds a time stamp
to the collected data.

The errdemon daemon constantly checks the /dev/error file for new entries, and when new
data is written, the daemon conducts a series of operations. Before an entry is written to the
error log, the errdemon daemon compares the label sent by the kernel or application code to
the contents of the error record template repository. If the label matches an item in the
repository, the daemon collects additional data from other parts of the system.

To create an entry in the error log, the errdemon daemon retrieves the appropriate template
from the repository, the resource name of the unit that detected the error, and detailed data.
Also, if the error signifies a hardware-related problem and the Vital Product Data (VPD)
hardware exists, the daemon retrieves the VPD from the Object Data Manager (ODM).

When you access the error log, either through SMIT or by using the errpt command, the
error log is formatted according to the error template in the error template repository and
presented in either a summary or detailed report.

Most entries in the error log are attributable to hardware and software problems, but
informational messages can also be logged. The errlogger command allows the system
administrator to record messages of up to 1024 bytes in the error log.

Whenever you perform a maintenance activity, such as clearing entries from the error log,
replacing hardware, or applying a software fix, it is good practice to record this activity in the
system error log; here is an example:

errlogger system hard disk '(hdisk0)' replaced.

This message will be listed as part of the error log.

2.3.13 The alog facility

The alog is a facility (or command) used to create and maintain fixed-size log files. The alog
command can maintain and manage logs. It reads standard input, writes to standard output,
and copies the output into a fixed-size file simultaneously. This file is treated as a circular log.
If the file is full, new entries are written over the oldest existing entries.

The alog command works with log files that are specified on the command line, or with logs
that are defined in the alog configuration database. Logs that are defined in the alog
configuration database are identified by LogType. The File, Size, and Verbosity attributes for
each defined LogType are stored in the alog configuration database with the LogType. The
alog facility is used to log boot time messages, install logs, and so on.

You can use the alog -L command to display all log files that are defined for your system.
The resulting list contains all logs that are viewable with the alog command. Information
saved in BOS installation log files might help you determine the cause of installation
problems. To view BOS installation log files, enter:

alog -o -f bosinstlog

All boot messages are collected in a boot log file, because at boot time there is no console
available. Boot information is usually collected in /var/adm/ras/bootlog. It is good practice to
check the bootlog file when you are investigating boot problems. The file will contain output
generated by the cfgmgr command and rc.boot.
Chapter 2. AIX continuous availability features 31

To display the boot log, use the following command:

alog -t boot -o | more

Alternatively, you can use the SMIT fastpath smitty alog menu shown in Example 2-3.

Example 2-3 SMIT alog menu

Alog

Move cursor to desired item and press Enter.

 Show an Alog File
 Change / Show Characteristics of an Alog File

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do

Example 2-4 shows a list of available alog files, located in /var/adm/ras/.

Example 2-4 List of available alog files

Show an Alog File

Type or select a value for the entry field.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* +--+
 | Alog TYPE |
 | |
 | Move cursor to desired item and press Enter. |
 | |
 | boot |
 | bosinst |
 | nim |
 | console |
 | cfg |
 | lvmcfg |
 | lvmt |
 | dumpsymp |
 | |
 | F1=Help F2=Refresh F3=Cancel |
F1| F8=Image F10=Exit Enter=Do |
F5| /=Find n=Find Next |
F9+--+

2.3.14 syslog

The syslogd daemon logs the system messages from different software components (kernel,
daemon processes, and system applications). This daemon uses a configuration file to
determine where to send a system message, depending on the message's priority level and
the facility that generated it. By default, syslogd reads the default configuration file
/etc/syslog.conf, but by using the -f flag when starting syslogd, you can specify an alternate
32 IBM AIX Continuous Availability Features

configuration file. Whenever you change this configuration file, you need to refresh the
syslogd subsystem, as follows:

refresh -s syslogd

The syslogd daemon reads a datagram socket and sends each message line to a destination
described by the /etc/syslog.conf configuration file. The syslogd daemon reads the
configuration file when it is activated and when it receives a hang-up signal.

Each message is one line. A message can contain a priority code marked by a digit enclosed
in angle braces (< >) at the beginning of the line. Messages longer than 900 bytes may be
truncated.

The /usr/include/sys/syslog.h include file defines the facility and priority codes used by the
configuration file. Locally-written applications use the definitions contained in the syslog.h file
to log messages using the syslogd daemon. For example, a configuration file that contains
the following line is often used when a daemon process causes a problem:

daemon.debug /tmp/syslog.debug

This line indicates that a facility daemon should be controlled. All messages with the priority
level debug and higher should be written to the file /tmp/syslog.debug.

The daemon process that causes problems (in our example, the inetd) is started with option
-d to provide debug information. This debug information is collected by the syslogd daemon,
which writes the information to the log file /tmp/syslog.debug.

Logging can also improve security on your system by adding additional logging to the
syslog.conf file. You can then increase system logging by adding extra logging for your
system by editing inetd.conf and adding logging into each of the demons as required.

Example 2-5 shows a sample of syslog.conf settings.

Example 2-5 syslog settings

bianca:/etc/#vi syslog.conf
*.info /var/adm/syslog/syslog.log
*.alert /var/adm/syslog/syslog.log
*.notice /var/adm/syslog/syslog.log
*.warning /var/adm/syslog/syslog.log
*.err /var/adm/syslog/syslog.log
*.crit /var/adm/syslog/syslog.log rotate time 1d files 9

The last line in Example 2-5 indicates that this will create only 9 files and use a rotation on
syslog. A file designated for storing syslog messages must exist; otherwise, the logging will
not start. Remember to refresh syslog after any changes are made to the syslog configuration
file.

Extra logging on demons controlled by inetd.conf can be configured as shown in Example 2-6
(ftpd is shown).

Example 2-6 Verbose logging for ftpd

bianca:/etc/#vi inetd.con

ftp stream tcp6 nowait root /usr/sbin/ftpd ftpd -l

Note: The file /tmp/syslog.debug must exist.
Chapter 2. AIX continuous availability features 33

Logging can be added to many of the components in inetd.conf. Remember to refresh the
inetd after you are done.

2.3.15 Concurrent AIX Update

Historically, servicing defects in the kernel has required some sort of interruption to system
services in order to correct the problem. Typically, the interruption is in the form of a system
reboot. This results in significant disruption to production systems, and has numerous
implications to customers, including:

� The temporary loss of system availability and services
� An increased load on other systems
� A possible requirement of an unplanned maintenance window
� Monetary costs resulting from the loss of system availability

In addition, in some situations a diagnostic kernel is produced in order to analyze a problem,
and multiple reboots become necessary. The Concurrent AIX Update feature for AIX V6.1
allows fixes to the base kernel and kernel extensions to be applied and simultaneously
become fully operational on a running system. The system does not require any subsequent
reboot to activate fixes. Concurrent AIX Update’s ability to update a running system provides
the following significant advantages:

� The ability to apply either preventive maintenance or corrective service fix without
requiring a reboot

� The ability to reject an applied fix without requiring a reboot
� The ability to inject diagnostics or temporary circumventions without requiring a reboot
� Encouraging customer adoption of corrective service fixes, thereby decreasing outages

for which fixes existed, but which would not have formerly been applied, due to the
disruption to availability by the prior update scheme

� Improved system uptime
� Improved customer satisfaction
� A more convenient approach

Concurrent AIX Update enables activation and deactivation of IBM fixes to the kernel and
kernel extensions. It accomplishes this by adding new capabilities to the interim fix packaging
and installation tools, the system loader, and to the system process component.

Performing live updates on an operating system is a complicated task, and it places stringent
demands on the operating system. There are many different approaches available for
patching the operating system kernel. Concurrent AIX Update uses a method of functional
redirection within the in-memory image of the operating system to accomplish patching-in of
corrected code. After a fix for a problem has been determined, the corrected code is built,
packaged, and tested according to a new process for Concurrent AIX Update. It is then
provided to the customer, using the existing interim fix package format.

The package will contain one or more object files, and their corresponding executable
modules. Patch object files have numerous restrictions, including (but not limited to) that no
non-local data be modified, and that changes to multiple functions are only permitted if they

Note: The ability to apply or remove a fix without the requirement of a reboot is limited to
Concurrent AIX Updates. Technological restrictions prevent some fixes from being made
available as a Concurrent AIX Update. In such cases, those fixes may be made available
as an interim fix (that is, “traditional” ifix).

Traditional interim fixes for the kernel or kernel extensions still require a reboot of the
operating system for both activation and removal.
34 IBM AIX Continuous Availability Features

are valid when applied in a serial manner. The customer will manage Concurrent AIX
Updates using the emgr command.

Installation requires specification of new options specific to Concurrent AIX Updates.
Installation of a concurrent update will always perform an in-memory update. However, the
customer can chose to additionally perform an on-disk update. Executable modules are
provided for this purpose. The patch is then unpacked on the customer’s system, and verified
to be of correct version for the system. After verification, it is loaded into a reserved place
within the kernel’s allocated memory. The system loader, via new functionality, links
concurrent update objects with the in-memory image of the operating system. Linkage
performs symbol resolution and relocation of the patchset.

Defective functions that are to be patched have their first instruction saved aside and then
subsequently replaced with a branch. The branch serves to redirect calls to a defective
function to the corrected (patched) version of that function. To maintain system coherency,
instruction replacements are collectively performed under special operation of the system.

After patching is successfully completed, the system is fully operational with corrected code,
and no reboot is required. To remove a Concurrent AIX Update from the system, the
saved-aside instructions are simply restored. Again, no reboot is required.

This method is suitable to the majority of kernel and kernel extension code, including interrupt
handlers, locking code, and possibly even the concurrent update mechanism itself.

2.3.16 Core file control

A core file is created in the current directory when various errors occur. Errors such as
memory-address violations, illegal instructions, bus errors, and user-generated quit signals,
commonly cause this core dump. The core file that is created contains a memory image of the
terminated process. If the faulty process is multi-threaded and the current core size ulimit is
less than what is required to dump the data section, then only the faulting thread stack area is
dumped from the data section.

Two new commands, lscore and chcore, have been introduced to check the settings for the
corefile creation and change them, respectively. SMIT support has also been added; the
fastpath is smitty corepath.

For AIX 5.3, the chcore command can change core file creation parameters, as shown:

chcore [-R registry] [-c {on|off|default}] [-p {on|off|default}] [-l {path|
default] [-n {on|off|default}] [username | -d]

-c {on|off|default} Setting for core compression.
-d Changes the default setting for the system.
-l path Directory path for stored corefiles.
-n {on|off|default} Setting for core naming.
-p {on|off|default} Setting for core location.
-R registry Specifies the loadable I&A module.

New features have been added to control core files that will avoid key file systems being filled
up by core files generated by faulty programs. AIX allows users to compress the core file and
specify its name and destination directory.

The chcore command, as shown in Example 2-7, can be used to control core file parameters.

Example 2-7 Core file settings

lpar15root:/root#chcore -c on -p on -l /coredumps
lpar15root:/root#lscore
Chapter 2. AIX continuous availability features 35

compression: on
path specification: on
corefile location: /coredumps
naming specification: off

In Example 2-7 on page 35, we have created a file system to store core files generated on the
local system. This file system is mounted in the /coredumps directory. Next we created a core
file for a program (sleep 5000), as shown in Example 2-8. We send the program to the
background, so we get the process id, then we kill the program with Abort (-6) flag, and
observe the core file.

Example 2-8 Core file example

lpar15root:/root#sleep 5000 &
[1] 397486
lpar15root:/root#kill -6 397486
lpar15root:/root#
[1] + IOT/Abort trap(coredump) sleep 5000 &
lpar15root:/root#ls -l /coredumps
total 16
-rw------- 1 root system 7188 Oct 27 07:16 core.397486.27121636
drwxr-xr-x 2 root system 256 Oct 27 07:07 lost+found
lpar15root:/root#lquerypv -h /coredumps/core.397486.27121636 6b0 64
000006B0 7FFFFFFF FFFFFFFF 7FFFFFFF FFFFFFFF |................|
000006C0 00000000 00000FA0 7FFFFFFF FFFFFFFF |................|
000006D0 00120000 28E1D420 00000000 00000003 |....(..|
000006E0 736C6565 70000000 00000000 00000000 |sleep...........|
000006F0 00000000 00000000 00000000 00000000 |................|
00000700 00000000 00000000 00000000 0000002B |...............+|
00000710 00000000 00000001 00000000 0000002B |...............+|

2.4 Network tools

Networking is the means for a user to access system resources, application and data.
Without network connectivity, the system is practically unavailable. AIX ensures maximum
and efficient network performance and system availability to meet user needs by controlling
computing resources in order to minimize network problems and facilitate system
administration procedures.

This section covers the following network-related utilities currently available in AIX:

� Virtual IP address support
� Multipath IP routing
� Dead gateway detection
� EtherChannel
� IEEE 802.3ad Link Aggregation
� 2-Port Adapter-based Ethernet Failover
� Shared Ethernet Failover

Additional details and configuration information on these topics can be found in AIX 5L
Differences Guide Version 5.2 Edition, SG24-5765, AIX 5L Differences Guide Version 5.3
Edition, SG24-7463, and IBM AIX Version 6.1 Differences Guide, SC27-7559.
36 IBM AIX Continuous Availability Features

2.4.1 Virtual IP address support (VIPA)

Prior to AIX V5.1, separate applications were required to provide high availability for a service
IP address and its associated interface. If the network interface failed, then the application’s
TPCP/IP session was often lost, resulting in the loss of application availability.

To overcome this, support for virtual IP addresses (VIPA) on both IPv4 and IPv6 was
introduced in AIX V5.1. VIPA allows the application to bind to a system-wide level virtual IP
address, as opposed to a single network interface. VIPA is a virtual device often utilizing
several network interfaces. VIPA can often mask underlying network interface failures by
re-routing automatically to a different one. This allows continued connectivity and is
transparent to the application and processes. VIPA also supports load balancing of traffic
across the available connections.

Another advantage of choosing a virtual device (as opposed to defining aliases to real
network interfaces) is that a virtual device can be brought up or down separately without
having any effect on the real interfaces of a system. Furthermore, it is not possible to change
the address of an alias (aliases can only be added and deleted), but the address of a virtual
interface can be changed at any time.

Since its initial introduction in AIX V5.1, VIPA has been enhanced to make it friendlier, from a
network administration perspective. It has also been enhanced so that failovers are
completed faster, thus further improving availability.

2.4.2 Multipath IP routing

Prior to AIX V5.1, a new route could be added to the routing table only if it was different from
the existing routes. The new route would have to be different by either destination, netmask,
or group ID.

Also, previous AIX releases did not provide any mechanism to associate a specific interface
with a route. When there were multiple interfaces on the same subnet, the same outgoing
interface for all destinations accessible through that network was always chosen.

In order to configure a system for network traffic load balancing, it is desirable to have
multiple routes so that the network subsystem routes network traffic to the same network
segment by using different interfaces.

With the new multipath routing feature in AIX V6.1, routes no longer need to have a different
destination, netmask, or group ID list. If there are several routes that equally qualify as a route
to a destination, AIX will use a cyclic multiplexing mechanism (round-robin) to choose
between them. The benefit of this feature is two-fold:

� It enables load balancing between two or more gateways.
� The feasibility of load balancing between two or more interfaces on the same network can

be realized. The administrator would simply add several routes to the local network, one
through each interface.

Multipath routing is often utilized together with dead gateway detection.

2.4.3 Dead gateway detection

The dead gateway detection (DGD) feature introduced in AIX V5.1 implements a mechanism
for hosts to detect a dysfunctional gateway, adjust its routing table accordingly, and reroute
Chapter 2. AIX continuous availability features 37

network traffic to an alternate backup route, if available. DGD is generally most useful for
hosts that use static rather than dynamic routing.

AIX releases prior to AIX V5.1 do not permit you to configure multiple routes to the same
destination. If a route's first-hop gateway failed to provide the required routing function, AIX
continued to try to use the broken route and address the dysfunctional gateway. Even if there
was another path to the destination which would have offered an alternative route, AIX did not
have any means to identify and switch to the alternate route unless a change to the kernel
routing table was explicitly initiated, either manually or by running a routing protocol program,
such as gated or routed. Gateways on a network run routing protocols and communicate with
one another. If one gateway goes down, the other gateways will detect it, and adjust their
routing tables to use alternate routes (only the hosts continue to try to use the dead gateway).

The DGD feature in AIX V5.1 enables host systems to sense and isolate a dysfunctional
gateway and adjust the routing table to make use of an alternate gateway without the aid of a
running routing protocol program.

There are two modes for dead gateway detection:

� Passive dead gateway detection
� Active dead gateway detection

Passive dead gateway detection
Passive dead gateway detection will work without actively pinging the gateways known to a
given system. Passive DGD will take action to use a backup route if a dysfunctional gateway
has been detected.

The passive DGD mechanism depends on the protocols Transmission Control Protocol
(TCP) and Address Resolution Protocol (ARP), which provide information about the state of
the relevant gateways. If the protocols in use are unable to give feedback about the state of a
gateway, a host will never know that a gateway is down and no action will be taken.

Passive dead gateway detection has low overhead and is recommended for use on any
network that has redundant gateways. However, passive DGD is done on a best-effort basis
only.

Active dead gateway detection
When no TCP traffic is being sent through a gateway, passive DGD will not sense a
dysfunctional state of the particular gateway. The host has no mechanism to detect such a
situation until TCP traffic is sent or the gateway's ARP entry times out, which may take up to
20 minutes. But this situation does not modify route costs. In other words, a gateway not
forwarding packets is not considered dead. In such cases, active DGD becomes valuable to
use.

Active DGD will ping gateways periodically, and if a gateway is found to be down, the routing
table is changed to use alternate routes to bypass the dysfunctional gateway. Active dead
gateway detection will be off by default and it is recommended to be used only on machines
that provide critical services and have high availability requirements. Because active DGD
imposes some extra network traffic, network sizing and performance issues have to receive
careful consideration. This applies especially to environments with a large number of
machines connected to a single network.

2.4.4 EtherChannel

EtherChannel is a network interface aggregation technology that allows you to produce a
single large pipe by combining the bandwidth of multiple Ethernet adapters. In AIX V5.1, the
38 IBM AIX Continuous Availability Features

EtherChannel feature has been enhanced to support the detection of interface failures. This
is called network interface backup.

EtherChannel is a trademark registered by Cisco Systems and is generally called multi-port
trunking or link aggregation. If your Ethernet switch device supports this function, you can
exploit the facility provided in AIX V5.1. In this case, you must configure your Ethernet switch
to create a channel by aggregating a series of Ethernet ports.

EtherChannel allows for multiple adapters to be aggregated into one virtual adapter, which
the system treats as a normal Ethernet adapter. The IP layer sees the adapters as a single
interface with a shared MAC and IP address. The aggregated adapters can be a combination
of any supported Ethernet adapter, although they must be connected to a switch that
supports EtherChannel. All connections must be full-duplex and there must be a
point-to-point connection between the two EtherChannel-enabled endpoints.

EtherChannel provides increased bandwidth, scalability, and redundancy. It provides
aggregated bandwidth, with traffic being distributed over all adapters in the channel rather
than just one. To increase bandwidth, the only requirement is to add more adapters to the
EtherChannel, up to a maximum of eight physical devices.

If an adapter in the EtherChannel goes down, then traffic is transparently rerouted. Incoming
packets are accepted over any of the interfaces available. The switch can choose how to
distribute its inbound packets over the EtherChannel according to its own implementation,
which in some installations is user-configurable. If all adapters in the channel fail, then the
channel is unable to transmit or receive packets.

There are two policies for outbound traffic starting in AIX V5.2: standard and round robin:

� The standard policy is the default; this policy allocates the adapter to use on the basis of
the hash of the destination IP addresses.

� The round robin policy allocates a packet to each adapter on a round robin basis in a
constant loop.

AIX V5.2 also introduced the concept of configuring a backup adapter to the EtherChannel.
The backup adapter’s purpose is to take over the IP and MAC address of the channel in the
event of a complete channel failure, which is constituted by failure of all adapters defined to
the channel. It is only possible to have one backup adapter configured per EtherChannel.

2.4.5 IEEE 802.3ad Link Aggregation

IEEE 802.3ad is a standard way of doing link aggregation. Conceptually, it works the same as
EtherChannel in that several Ethernet adapters are aggregated into a single virtual adapter,
providing greater bandwidth and improved availability.

For example, ent0 and ent1 can be aggregated into an IEEE 802.3ad Link Aggregation called
ent3; interface ent3 would then be configured with an IP address. The system considers
these aggregated adapters as one adapter. Therefore, IP is configured over them as over any
single Ethernet adapter. The link remains available if one of the underlying physical adapters
loses connectivity.

Like EtherChannel, IEEE 802.3ad requires support in the switch. Unlike EtherChannel,
however, the switch does not need to be configured manually to know which ports belong to
the same aggregation.
Chapter 2. AIX continuous availability features 39

2.4.6 2-Port Adapter-based Ethernet failover

The IBM 2-Port 10/100/1000 Base-TX Ethernet PCI-X Adapter, and the IBM 2-Port Gigabit
Ethernet-SX PCI-X Adapter, provide an alternate failover capability. The failover configuration
requires both ports to be connected to a switch module. One of the ports is configured as the
primary, and the other is configured as the backup. Only the primary port is configured with
an IP address. If the primary port loses its connection to the switch module, the backup port
will take over seamlessly.

2.4.7 Shared Ethernet failover

The shared Ethernet failover needs two Virtual IO Server (VIOS) logical partitions (LPARs) of
an IBM eServer™ p5 (POWER5) or p6 (Power6) node. A shared Ethernet adapter can be
configured on both LPARs for the same networks. The shared adapter with higher priority is
the primary. The backup is inactive when the primary is up, and it automatically becomes
active when the primary fails.

2.5 Storage tools

Built into AIX is the powerful and flexible storage Logical Volume Manager (LVM). In addition,
AIX also manages the hardware (devices) to access physical storage, and device drivers to
manage data (file system). All these tools have been designed with availability and
serviceability in mind. These tools include:

� Hot swap disks
� System backup (mksysb)
� Alternate disk installation
� Network Installation Manager (NIM)
� Logical Volume Manager (LVM)-related options
� Enhanced Journaled File System (JFS)-related options
� AIX storage device driver-related options

These tools are explained in more detail in the following sections.

2.5.1 Hot swap disks

Utilizing the combination of hardware features available in most POWER servers, storage
subsystems and AIX, the hot swap disk feature provides the ability to replace a failed, or
failing, hard drive dynamically without requiring any downtime. AIX provides many utilities
such as mkdev, cfgmgr, and rmdev to support the disk replacement.

While this concept is not new by today’s standards, it represents yet another ability that
contributes to overall system availability. This ability can be used in conjunction with both PCI
hot plug management (see 2.1.9, “PCI hot plug management” on page 15), and hot spare
disks (see “Hot spare disks in a volume group” on page 43).

2.5.2 System backup (mksysb)

Although mksysb backup is not considered a true “availability” feature by normal standards,
the tool is mentioned here as one of the best methods for convenient backup and recovery.
Maintaining a backup of your system for recovery is strongly recommended. By using backup
40 IBM AIX Continuous Availability Features

and recovery tools, you can achieve very fast backup and, more importantly, system recovery
of AIX systems. AIX simplifies the backup procedure in the following ways:

� Traditionally, backups have stored data on hard disks. AIX gives you the option of backing
up your system to File (NIM server), tape drive, and CD/DVD. Compared to other backup
media, CDs are portable, inexpensive, and highly reliable.

� The Network Installation Manager (NIM) server can be used to store and recover any
other system.

� You can create a bootable root-volume group backup or user-volume group backup.
� In addition to system recovery, backups can be used to install additional systems with the

same image as the system that was originally backed up (called cloning).
� You can create a customized installation CD for other machines.
� You can use mksysb AIX backups confidently on other IBM AIX-based machines without

regard to hardware options.
� You do not have to restore an entire backup. You can list the contents of a system backup

and choose to restore only selected files on a running system.

For details about system backup and recovery, refer to the AIX Documentation Web page:

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.install/
doc/insgdrf/backup_intro.htm

2.5.3 Alternate disk installation

Alternate disk installation and migration allows users a way to update the operating system to
the next release, maintenance level, or technology level, without taking the machine down for
an extended period of time. Advantages of using alternate disk migration over a conventional
migration are reduced downtime, quick recovery from migration failures, and a high degree of
flexibility and customization.

This feature also allows the ability to multi-boot from different AIX level images that could also
contain different versions or updates to an application. This may be useful for periods of
testing, or to even help create a test environment. This feature, originally introduced in AIX
4.1.4.0, utilizes the alt_disk_inst command. Starting in AIX V5.3, this feature has now been
expanded into three commands:

alt_disk_copy
alt_disk_mksysb
alt_rootvg_op

These commands now offer additional granular options and greater flexibility than ever
before.

Additional details about these commands are available in AIX 5L Version 5.3 Commands
Reference, Volume 1, a-c, SC23-4888. This publication is also available online at the
following site:

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds1/a
ixcmds1.pdf

2.5.4 The multibos utility

Beginning with AIX V5.3 ML3, the multibos utility allows the root level administrator to create
and maintain two bootable instances of the AIX Base Operating System (BOS) within the
same root volume group (rootvg). This utility is provided primarily as an upgrade vehicle.

The multibos utility allows the administrator to access, install maintenance, update, and
customize the standby instance of BOS (during setup or in subsequent customization
Chapter 2. AIX continuous availability features 41

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds1/aixcmds1.pdf

operations) without affecting production on the running instance. Migration to later releases of
AIX will be supported when they are available.

The file systems /, /usr, /var, /opt, and /home, along with the boot logical volume, must exist
privately in each instance of BOS. The administrator has the ability to share or keep private
all other data in the rootvg. As a general rule, shared data should be limited to file systems
and logical volumes containing data not affected by an upgrade or modification of private
data.

When updating the non-running BOS instance, it is best to first update the running BOS
instance with the latest available version of multibos (which is in the bos.rte.bosinst fileset).

Additional details on the multibos utility are available in the man pages and in AIX 5L Version
5.3 Commands Reference, Volume 3, a-c, SC23-4890. This publication is also available
online at the following site:

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds3/a
ixcmds3.pdf

2.5.5 Network Installation Manager (NIM)

The Network Installation Manager (NIM) allows you to centralize installation administration for
multiple machines and schedule those installations to minimize disruptions and
inconvenience.

� Network Installation Management can be used for centralized installation and software
administration of your AIX systems.

� You can choose to install all networked machines at the same time, or stagger those
installations.

� Within NIM, you can remain at your console while installing AIX on remote machines. You
can even run typical installations unattended.

� You can install each machine with unique options, or install all machines with consistent
options.

� You can make a system backup to a NIM server by using the mksysb command, and use
that backup to install another machine (cloning), as follows:

smitty nim

For details and examples about how to use NIM to enhance your system availability, refer to
the IBM Redbooks publication NIM from A to Z in AIX 5L, SG24-7296.

2.5.6 Logical Volume Manager-related options

This section discusses Logical Volume Manager (LVM)-related options.

LVM RAID options
LVM supports three software level RAID options:

� RAID0 w/ LVM striping
� RAID1 - LVM mirroring 1:1 (two copies) or 1:1:1 (three copies)
� RAID10 (0+1) - LVM striping plus mirroring

For non-SAN based storage environments, it is quite common to utilize AIX LVM’s ability to
mirror data. This is especially true for the operating system disks (rootvg). By mirroring
rootvg, this allows AIX to continue operating in the event of a rootvg disk failure. This feature,
42 IBM AIX Continuous Availability Features

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.cmds/doc/aixcmds1/aixcmds1.pdf

when combined with hot spare disk and hot swap disks, allows for maintenance to take place
without requiring any planned down time.

However, although LVM mirroring does increase storage availability, it is not intended to be a
substitute for system backup. Additional detailed information about LVM mirroring is available
in the mirrorvg man page and in AIX 5L Version 5.3 System Management Concepts:
Operating System and Devices Management, SC23-5204.

Hot spare disks in a volume group
Beginning with AIX V5.1, the ability to designate hot spare disks for an LVM mirrored volume
group was added. LVM hot spare allows automatic migration of partitions from a failing disk to
another free disk previously assigned as a hot spare. The hot spare disk feature is an
operating system equivalent to that of a hot spare disk when using a RAID storage solution
that most storage administrators are already familiar. Hot spare disk concepts and policies
are described in AIX 5L Version 5.3 System Management Concepts: Operating System and
Devices Management, SC23-5204.

The chvg feature for sync
There is a feature in LVM to set the synchronization characteristics for the volume group
specified by the VolumeGroup parameter that either permits (y) the automatic
synchronization of stale partitions or prohibits (n) the automatic synchronization of stale
partitions. This flag has no meaning for non-mirrored logical volumes.

Automatic synchronization is a recovery mechanism that will only be attempted after the LVM
device driver logs LVM_SA_STALEPP in the errpt. A partition that becomes stale through any
other path (for example, mklvcopy) will not be automatically resynced. This is always used in
conjunction with the hot spare disk in a volume group feature.

To change the volume group characteristics, you can use the smitty chvg SMIT fastpath, or
you can use the following commands (these are examples):

/usr/sbin/chvg -s'y' fransvg
/usr/sbin/chvg -h hotsparepolicy -s syncpolicy volumegroup

Advanced RAID support
Most common storage subsystems today are RAID arrays defined into multiple logical units
(LUNs) that ultimately represent a disk definition to AIX. When additional space is required,
you can choose to expand the size of a current LUN, as opposed to adding an additional
LUN. This ultimately results in changing the size of a previously-defined disk.

In order to use this space, the disk must grow in size by dynamically adding additional
physical partitions (PP). AIX V5.2 introduced support of dynamic volume expansion by
updating the chvg command to include a new -g flag. More detailed information about this
topic is available in the man page for chvg and in AIX 5L Differences Guide Version 5.2
Edition, SG24-5765.

Portability of volume groups
One useful attribute of LVM is a user’s ability to take a disk or sets of disks that make up a
volume group to another AIX system and introduce the information created on the first
machine onto the second machine. This ability is provided through the Volume Group
Descriptor Area (VGDA) and the logical volume control block (LVCB).

The design of LVM also allows for accidental duplication of volume group and logical volume
names. If the volume group or logical volume names being imported already exist on the new
machine, then LVM will generate a distinct volume group or logical volume name.
Chapter 2. AIX continuous availability features 43

Quorum
A quorum is a vote of the number of Volume Group Descriptor Areas and Volume Group
Status Areas (VGDA/VGSA) that are active. A quorum ensures data integrity of the
VGDA/VGSA areas in the event of a disk failure. Each physical disk in a volume group has at
least one VGDA/VGSA.

When a volume group is created onto a single disk, it initially has two VGDA/VGSA areas
residing on the disk. If a volume group consists of two disks, one disk still has two
VGDA/VGSA areas, but the other disk has one VGDA/VGSA. When the volume group is
made up of three or more disks, then each disk is allocated just one VGDA/VGSA.

A quorum is lost when enough disks and their VGDA/VGSA areas are unreachable such that
51% (a majority) of VGDA/VGSA areas no longer exists. In a two-disk volume group, if the
disk with only one VGDA/VGSA is lost, a quorum still exists because two of the three
VGDA/VGSA areas still are reachable. If the disk with two VGDA/VGSA areas is lost, this
statement is no longer true. The more disks that make up a volume group, the lower the
chances of quorum being lost when one disk fails.

When a quorum is lost, the volume group varies itself off so that the disks are no longer
accessible by the Logical Volume Manager (LVM). This prevents further disk I/O to that
volume group so that data is not lost or assumed to be written when physical problems occur.
Additionally, as a result of the vary off, the user is notified in the error log that a hardware
error has occurred and service must be performed.

There are cases when it is desirable to continue operating the volume group even though a
quorum is lost. In these cases, quorum checking may be turned off for the volume group. This
type of volume group is referred to as a nonquorum volume group. The most common case
for a nonquorum volume group is when the logical volumes have been mirrored.

When a disk is lost, the data is not lost if a copy of the logical volume resides on a disk that is
not disabled and can be accessed. However, there can be instances in nonquorum volume
groups, mirrored or nonmirrored, when the data (including copies) resides on the disk or disks
that have become unavailable. In those instances, the data may not be accessible even
though the volume group continues to be varied on.

Online quorum change
Starting in AIX 5.3 TL7, quorum changes are allowed online without having to varyoff and
varyon the volume group. This also means no reboot is required when changing quorum for
rootvg.

Scalable Volume Group
Scalable Volume Group (SVG) support was added in AIX 5.3 that will allow increasing the
number of logical volumes and physical partitions online without requiring additional free
partitions for metadata expansion. The SVG support also removed the 1016 PP per PV
limitation that required factor changes when trying to extend a VG with a disk that has more
than 1016 partitions. Refer to the mkvg (-S option) man page for more information.

2.5.7 Geographic Logical Volume Manager

The Geographic Logical Volume Manager (GLVM), added into AIX V5.3 ML3 in
September 2005, is an AIX LVM extension for real time geographic data mirroring over
standard TCP/IP networks. GLVM can help protect your business from a disaster by mirroring
your mission-critical data to a remote disaster recovery site.
44 IBM AIX Continuous Availability Features

GLVM is built upon AIX’s Logical Volume Manager, which allows you to create up to three
total copies of data between two geographically distant locations. Because of its tight
integration with LVM, users who are already familiar with LVM should find GLVM very easy to
learn. Because it is operating system-based, this creates additional flexibility by allowing
GLVM to be independent of the storage subsystems.

GLVM is synchronous data replication of physical volumes to remote physical volumes. The
combination of both remote physical volumes with local physical volumes form
geographically mirrored volume groups. These are managed by LVM very much like
ordinary volume groups. A high level example of a GLVM environment is shown in Figure 2-1.

Figure 2-1 GLVM concepts example

Additional GLVM details, including installing and configuring, are available in the white paper
Using the Geographic LVM in AIX 5L, which can be found online at the following site:

http://www-03.ibm.com/systems/p/os/aix/whitepapers/pdf/aix_glvm.pdf

GLVM by itself does not provide automated recovery in the event of a catastrophic site failure.
However, it is a fully integrated and supported option in IBM’s premier disaster recovery
software solution for System p systems running AIX called HACMP/XD. More information
about HACMP/XD options, including GLVM, is available in Implementing High Availability
Cluster Multi-Processing (HACMP) Cookbook, SG24-6769.

Although GLVM does not have technical distance limitations for support, there are several
factors which dictate what is realistically achievable. These factors include, but are not limited
to, network bandwidth, I/O rates, and latency between the sites. More detailed information
about this topic is available in the white paper Optimizing Mirroring Performance using
HACMP/XD for Geographic LVM, which can be found online at the following site:

http://www-304.ibm.com/jct03004c/systems/p/software/whitepapers/hacmp_xd_glvm.pdf

Subset of disks are defined as “Remote Physical Volumes” or RPVs

copy 1 Mirror 2 copy 2copy 1 Mirror 2 copy 2

copy 1 Mirror 1 copy 2copy 1 Mirror 1 copy 2

RPV Driver
Replicates
data over

WAN

LVM
Mirrored
Volume
Group

Both sites always have a complete copy of all mirrors

Site A Site B

Jordan Jessica Marcus Izzy
Chapter 2. AIX continuous availability features 45

http://www-03.ibm.com/systems/p/os/aix/whitepapers/pdf/aix_glvm.pdf
http://www-304.ibm.com/jct03004c/systems/p/software/whitepapers/hacmp_xd_glvm.pdf

2.5.8 Journaled File System-related options

AIX provides native support for Journaled File System (JFS) and JFS2. These file systems
have built-in characteristics to maintain data availability and integrity. JFS and JFS2 work in
conjunction with AIX LVM, as described in this section.

Enhanced Journaled File System (JFS2)
Enhanced Journaled File System (JFS2) supports the entire set of file system semantics. The
file system uses database journaling techniques to maintain its structural consistency. This
prevents damage to the file system when the file system is halted abnormally.

Each JFS2 resides on a separate logical volume. The operating system mounts JFS2 during
initialization. This multiple file system configuration is useful for system management
functions such as backup, restore, and repair. It isolates a part of the file tree to allow system
administrators to work on a particular part of the file tree.

JFS2 file system shrink
Dynamically adding additional space to an existing filesystem can be easily done. However,
reducing a filesystem often involved creating another smaller filesystem, copying the data
over, and then removing the original filesystem.

AIX V5.3 introduced the ability to shrink a JFS2 filesystem dynamically by allowing the chfs
command to recognize a - in the size attribute to be interpreted as a request to reduce the
filesystem by the amount specified. More detailed information about shrinking a filesystem is
available in AIX 5L Differences Guide Version 5.3 Edition, SG24-7463.

2.5.9 AIX storage device driver-related options

Today’s storage subsystems provide built-in performance and data protection. However, they
must be matched with operating system drivers to fully exploit their characteristics.

Multipath I/O (MPIO)
Multipath I/O (MPIO) was a new feature introduced in AIX V5.2 that allows access to a single
disk device (LUN) from multiple adapters along different (storage) paths. There are three
main reasons to utilize MPIO:

� Improved performance
� Improved reliability and availability
� Easier device administration

MPIO supports standard AIX commands to be used to administer the MPIO devices.

A path control module (PCM) provides the path management functions. An MPIO-capable
device driver can control more than one type of target device. A PCM can support one or
more specific devices. Therefore, one device driver can be interfaced to multiple PCMs that
control the I/O across the paths to each of the target devices.

The AIX PCM has a health-check capability that can be used for the following tasks:

� Check the paths and determine which paths are currently usable for sending I/O.
� Enable a path that was previously marked failed because of a temporary path fault (for

example, when a cable to a device was removed and then reconnected).
� Check currently unused paths that would be used if a failover occurred (for example, when

the algorithm attribute value is failover, the health check can test the alternate paths).
46 IBM AIX Continuous Availability Features

However, not all disk devices can be detected and configured by using the AIX default PCMs.
The AIX default PCMs consist of two path control modules, one to manage disk devices and
another to mange tape devices. If your device is not detected, check with the device vendor
to determine if a PCM is available for your device.

AIX MPIO supports multiple IO routing policies, thereby increasing the system administrator’s
control over MPIO reliability and performance. Detailed information on MPIO including path
management is available in AIX 5L System Management Guide: Operating System and
Devices Management, SC23-5204, which is also online at the following site:

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.baseadmn/doc/basead
mndita/baseadmndita.pdf

Dynamic tracking of fibre channel devices
Dynamic tracking was introduced in AIX V5.2 ML1. Prior to its introduction, performing SAN
fabric changes such as moving cables between ports, adding interswitch links, and anything
that caused N_Port ID to change, involved a service disruption. Often this would include
unmounting filesystems, varying off volume groups, and even removing the device definition.

Dynamic tracking allows such changes to be performed without bringing the devices offline.
Although this support is an integral component in contributing to overall system availability,
devices that are only accessible by one path can still be affected during these changes.
Applied logic dictates that a single path environment does not provide maximum availability.

Dynamic tracking of fibre channel devices is controlled by a new fscsi device attribute, dyntrk.
The default setting for this attribute is no. To enable this feature, the fscsi attribute must be
set to yes, as shown in Example 2-9.

Example 2-9 Enabling dynamic tracking

lizray /# lsattr -El fscsi0
attach switch How this adapter is CONNECTED False
dyntrk no Dynamic Tracking of FC Devices True
fc_err_recov delayed_fail FC Fabric Event Error RECOVERY Policy True
scsi_id 0x10500 Adapter SCSI ID False
sw_fc_class 3 FC Class for Fabric True

lizray /# chdev -l fscsi0 -a dyntrk=yes

lizray /# lsattr -El fscsi0
attach switch How this adapter is CONNECTED False
dyntrk yes Dynamic Tracking of FC Devices True
fc_err_recov fast_fail FC Fabric Event Error RECOVERY Policy True
scsi_id 0x10500 Adapter SCSI ID False
sw_fc_class 3 FC Class for Fabric
True

Fast I/O failure for Fibre Channel devices
This feature allows the user to indicate that I/Os down a particular link be failed faster than
they are currently. This may be useful in a multipath environment where customers want I/Os
to fail over to another path relatively quickly.

Important: If child devices exist and are in the available state, this command will fail.
These devices must either be removed or put in the defined state for successful
execution.
Chapter 2. AIX continuous availability features 47

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.baseadmn/doc/baseadmndita/baseadmndita.pdf

Fast I/O failure is controlled by a new fscsi device attribute, fc_err_recov. The default setting
for this attribute is delayed_fail, which is the I/O failure behavior that has existed in previous
versions of AIX. To enable this feature, the fscsi attribute must be set to fast_fail utilizing the
chdev command, as shown in Example 2-10:

Example 2-10 Enabling fast I/O failure

valkim /# lsattr -El fscsi0
attach switch How this adapter is CONNECTED False
dyntrk no Dynamic Tracking of FC Devices True
fc_err_recov delayed_fail FC Fabric Event Error RECOVERY Policy True
scsi_id 0x10500 Adapter SCSI ID False
sw_fc_class 3 FC Class for Fabric True

valkim /# chdev -l fscsi0 -a fc_err_recov=fast_fail

valkim /# lsattr -El fscsi0
attach switch How this adapter is CONNECTED False
dyntrk no Dynamic Tracking of FC Devices True
fc_err_recov fast_fail FC Fabric Event Error RECOVERY Policy True
scsi_id 0x10500 Adapter SCSI ID False
sw_fc_class 3 FC Class for Fabric True

In single-path configurations, especially configurations with a single-path to a paging device,
the default delayed_fail setting is the recommended setting.

In addition, dynamic tracking is often used in conjunction with fast I/O fail. Additional
information about requirements and restrictions of fast I/O failure for fibre channel devices is
available in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming
Concepts, SC23-4900.

2.6 System and performance monitoring and tuning

Tools are available for monitoring and tuning the system to provide better performance and
increased availability and resiliency, as described in the following sections.

2.6.1 Electronic Service Agent

Electronic Service Agent™ is a no-charge software tool that resides on your system to
continuously monitor events and periodically send service information to IBM support on a
user-definable timetable. This information may assist IBM support in diagnosing problems.

This tool tracks and captures service information, hardware error logs, and performance
information. It automatically reports hardware error information to IBM support as long as the
system is under an IBM maintenance agreement or within the IBM warranty period. Service
information and performance information reporting do not require an IBM maintenance
agreement or do not need to be within the IBM warranty period to be reported.

Previous Electronic Service Agent products were unique to the platform or operating system
on which they were designed to run. Because the Electronic Service Agent products were

Important: If child devices exist and are in the available state, this command will fail.
These devices must either be removed or put in the defined state for successful
execution.
48 IBM AIX Continuous Availability Features

unique, each offered its own interface to manage and control the Electronic Service Agent
and its functions. Since networks can have different platforms with different operating
systems, administrators had to learn a different interface for each different platform and
operating system in their network. Multiple interfaces added to the burden of administering
the network and reporting problem service information to IBM support.

In contrast, Electronic Service Agent 6.1 installs on platforms running different operating
systems. ESA 6.1 offers a consistent interface to reduce the burden of administering a
network with different platforms and operating systems. Your network can have some clients
running the Electronic Service Agent 6.1 product and other clients running the previous
Electronic Service Agent product.

If you have a mixed network of clients running Electronic Service Agent 6.1 and previous
Electronic Service Agent products, you need to refer to the information specific to each
Electronic Service Agent product for instructions on installing and administering that product.

To access Electronic Service Agent user guides, go to the Electronic Services Web site and
select Electronic Service Agent from the left navigation. In the contents pane, select
Reference Guides > Select a platform > Select an Operating System or Software.

Alternatively, you can use the following SMIT fastpath:

smitty esa_main

Further information is available at the following site:

http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicbd/eicbd_aix.pdf

2.6.2 Other tools for monitoring a system

There are also other tools that are useful for system monitoring; here are a few examples:

� vmstat - Overall system statistics
� netstat - Network statistics
� no - Network tuning
� sar - Overall system statistics
� iostat - Disk and CPU statistics (needs to be enabled to collect statistics)
� lsconf - List and document the machine
� filemon - Find the busy filesystems and files
� fileplace - Check for scrambled files
� lparstat - Check on shared processor LPARs
� perfpmr - Report performance issues
� lvmstat - Check high-use disks
� ioo - Configures I/O tuning parameters
� tuncheck - Validates a tunable file with tunchange, tundefault,tunrestore, and tunsave

commands

You can write shell scripts to perform data reduction on the command output, warn of
performance problems, or record data on the status of a system when a problem is occurring.
For example, a shell script can test the CPU idle percentage for zero (0), a saturated
condition, and execute another shell script for when the CPU-saturated condition occurred.

2.6.3 The topas command

The topas command reports vital statistics about the activity on the local system, such as real
memory size and the number of write system calls. This command uses the curses library to
Chapter 2. AIX continuous availability features 49

http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicbd/eicbd_aix.pd

display its output in a format suitable for viewing on an 80x25 character-based display, or in a
window of at least the same size on a graphical display.

The topas command extracts and displays statistics from the system with a default interval of
two seconds. The command offers the following alternate screens:

� Overall system statistics
� List of busiest processes
� WLM statistics
� List of hot physical disks
� Logical partition display
� Cross-Partition View (AIX V5.3 ML3 and higher)

SMIT panels are available for easier configuration and setup of the topas recording function
and report generation; use this command:

smitty topas

2.6.4 Dynamic kernel tuning

AIX offers dynamic kernel tuning without system reboots as one of its many standard features
for excellent single-system availability. AIX provides the following significant dynamically
tunable kernel parameters without system reboots:

� Scheduler and memory load control parameters
� Virtual Memory Manager, File System and Logical Volume Manager parameters
� Network option parameters
� NFS option parameters
� Input/Output parameters
� Reliability, Accessibility and Serviceability parameters

All six tuning commands (schedo, vmo, no, nfso, ioo, and raso) use a common syntax
and are available to directly manipulate the tunable parameter values. SMIT panels and
Web-based System Manager plug-ins are also available. These all provide options for
displaying, modifying, saving, and resetting current and next boot values for all the kernel
tuning parameters. To start the SMIT panels that manage AIX kernel tuning parameters, use
the SMIT fast path smitty tuning.

You can make permanent kernel-tuning changes without having to edit any rc files. This is
achieved by centralizing the reboot values for all tunable parameters in the
/etc/tunables/nextboot stanza file. When a system is rebooted, the values in the
/etc/tunables/nextboot file are automatically applied. For more information, refer to IBM

Important: Keep in mind that the incorrect use of commands to change or tune the AIX
kernel can cause performance degradation or operating system failure.

Before modifying any tunable parameter, you should first carefully read about all of the
parameter's characteristics in the Tunable Parameters section of the product
documentation in order to fully understand the parameter's purpose.

Then ensure that the Diagnosis and Tuning sections for this parameter actually apply to
your situation, and that changing the value of this parameter could help improve the
performance of your system. If the Diagnosis and Tuning sections both contain only N/A, it
is recommended that you do not change the parameter unless you are specifically directed
to do so by IBM Software Support.
50 IBM AIX Continuous Availability Features

eServer Certification Study Guide - AIX 5L™ Performance and System Tuning, SG24-6184,
which is available at the following site:

http://www.redbooks.ibm.com/redbooks/pdfs/sg246184.pdf

The raso command
The raso command is used to configure “selected” RAS tuning parameters. This command
sets or displays the current or next-boot values to configure selected tuning parameters for
the RAS tuning parameters it supports. The command can also be used to make permanent
changes, or to defer changes until the next reboot.

The specified flag determines whether the raso command sets or displays a parameter. The
-o flag can be used to display the current value of a parameter, or to set a new value for a
parameter.

Here, we show the command syntax for the raso command:

Command Syntax
raso [-p | -r] [-o Tunable [= Newvalue]]
raso [-p | -r] [-d Tunable]
raso [-p] [-r] -D
raso [-p] [-r] [-F]-a
raso -h [Tunable]
raso [-F] -L [Tunable]
raso [-F] -x [Tunable]

As with all AIX tuning parameters, changing a raso parameter may impact the performance or
reliability of your AIX LPAR or server; refer to IBM System p5 Approaches to 24x7 Availability
Including AIX 5L, for more information about this topic, which is available at the following site:

http://www.redbooks.ibm.com/redbooks/pdfs/sg247196.pdf

We recommend that you do not change the parameter unless you are specifically directed to
do so by IBM Software Support.

2.7 Security

The security features in AIX also contribute to system availability.

Role-Based Access Control
Role-Based Access Control (RBAC) improves security and manageability by allowing
administrators to grant authorization for the management of specific AIX resources to users
other than root by associating those resources with a role that is then associated with a
particular system user. Role-Based Access Control can also be used to associate specific
management privileges with programs, which can reduce the need to run those programs
under the root user or via setuid.

AIX Security Expert LDAP integration
The AIX Security Expert provides clients with the capability to manage more than 300 system
security settings from a single interface. The AIX Security Expert has been enhanced in AIX
V6.1 with an option to store security templates directly in a Lightweight Directory Protocol
(LDAP) directory, thus simplifying implementation of a consistent security policy across an
entire enterprise.

Note: Multiple -o, -d, -x, and -L flags can be specified.
Chapter 2. AIX continuous availability features 51

http://www.redbooks.ibm.com/redbooks/pdfs/sg246184.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247196.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247196.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246184.pdf

For more detailed information about security features in AIX, refer to AIX V6 Advanced
Security Features Introduction and Configuration, SG24-7430, which is available at the
following site:

http://www.redbooks.ibm.com/redbooks/pdfs/sg247430.pdf

2.8 AIX mobility features

This section introduces the new AIX mobility features and explains their basic requirements.

� Live partition mobility
� Live application mobility

2.8.1 Live partition mobility

Live partition mobility allows you to move a logical partition from one physical server to
another, with no application downtime. Partition mobility is a key continuous availability
feature for enhancing Advanced Power Virtualization, and it will help you meet common
business needs by keeping applications up and running.

Partition mobility basic requirements
Partition mobility requires at least two POWER6 Systems managed by the same Hardware
Management Console (HMC). Both systems must have the Advanced Power Virtualization
feature activated, and both systems need to be connected to the same HMC and private
network. All logical partitions must be on the same open network with Resource Monitoring
and Control (RMC) established to the HMC.

Partition mobility usage examples
Partition mobility can be used for evacuating a system before performing scheduled system
maintenance. It is also useful for moving workloads across a pool of different resources as
business needs shift, and for removing workloads from underutilized machines so that they
can powered off to save energy costs.

For more information about this topic, refer to the IBM Redbooks publication IBM System p
Live Partition Mobility, SG24-7460.

2.8.2 Live application mobility

Live application mobility is enabled by the IBM Workload Partitions Manager™ (WPAR
Manager) for AIX product. WPAR Manager provides functionalities that make it possible to
move a workload partition from one server to another. A workload partition (WPAR) is a
software-created, virtualized operating system environment within a single AIX V6.1 image.
Each workload partition is a secure and isolated environment for the application it hosts. To
the application in a workload partition, it appears it is being executed in its own dedicated AIX
instance.

Note: The partition to be moved must use only virtual devices. The virtual disks must be
LUNs on external SAN storage. The LUNs must be accessible to the VIO Server on each
system.
52 IBM AIX Continuous Availability Features

http://www.redbooks.ibm.com/redbooks/pdfs/sg247430.pdf

The virtualization introduced with the workload partition (WPAR) allows WPAR checkpoint
and WPAR resume functionalities. The functionality of checkpoint and resume of a workload
partition on another system is called live application mobility, as explained here:

� Checkpoint consists of taking a real-time snapshot of the WPAR content and dumping it to
disk. This file on disk is called a statefile. The snapshot will interrupt all processes to reach
a quiescence point to allow the scan and capture of all resources in memory into the
statefile.

� Resume consists of recreating a WPAR and reloading its content in memory on another
system from the previous statefile, and then resuming its processing. From the user
perspective, it is as if the application just paused for a moment.

Live application mobility requirements

For live partition mobility, each participating logical partition and machine must be configured
the same way for the workload partition. This includes:

� The same file systems needed by the application via NFS V3 or NFS V4.
� Similar network functionalities (usually the same subnet, with routing implications).
� Enough space to handle the data created during the relocation process. (Estimating the

size is very difficult since it would include the virtual application size, some socket
information, and possible file descriptor information.)

� The same operating system level and technology maintenance level (TL).

For more information about workload partitions and live application mobility, refer to the IBM
Redbooks publication Introduction to Workload Partition Management in IBM AIX Version 6,
SG24-7431.

Note: Live application mobility is a completely separate technology from live partition
mobility. However, they can coexist on a system that can match the prerequisites of both.

Note: In addition to operating system requirements, if not on shared file systems (NFS),
then application binaries must be at the same level (identical).
Chapter 2. AIX continuous availability features 53

54 IBM AIX Continuous Availability Features

Chapter 3. AIX advanced continuous
availability tools and features

This chapter details selected advanced continuous availability tools and features on AIX.
Some of these tools and features are new, announced with AIX V6.1. Others were recently
introduced on AIX. And still others have been available since early AIX V5.3 technology
levels.

The following tools and features are discussed here:

� RAS component hierarchy
� Lightweight memory trace (LMT)
� Snap
� Minidump and new dump facilities
� Concurrent updates
� POSIX trace
� Storage keys
� xmalloc debug enhancement
� ProbeVue
� Functional recovery routines (which handle kernel issues without bringing down the

system)

3

© Copyright IBM Corp. 2008. All rights reserved. 55

3.1 AIX Reliability, Availability, and Serviceability component
hierarchy

The advanced continuous availability tools and features can be assimilated as Reliability,
Availability, and Serviceability (RAS) tools or facilities. These facilities were developed to
enhance AIX capabilities for investigating application, component or subsystem failures and
problems—without needing to perform a complete system dump or stop the application or
system.

A RAS component hierarchy is used by some features. This divides the system into a
resource hierarchy, and allows individual RAS commands to be directed to very specific parts
of the system. The RAS features that exploit the RAS component hierarchy are runtime
checking, component trace, and component dump. This grouping hierarchy is illustrated in
Figure 3-1.

Figure 3-1 Component Reliability, Availability, and Serviceability

3.1.1 First Failure Data Capture feature

Lightweight memory trace is used to provide information for First Failure Data Capture
(FFDC). It was introduced in AIX Version V5.3 ML3. The set of First Failure Data Capture
features was further expanded in AIX V5.3 TL5 and AIX 6.1. They include:

� Lightweight memory trace (LMT)
� Run-time error checking (RTEC)
� Component Trace (CT)
� Live Dump

These features are enabled by default at levels that provide valuable First Failure Data
Capture information with minimal performance impact. To enable or disable all four advanced
First Failure Data Capture features, enter the following command:

/usr/lib/ras/ffdcctrl -o ffdc=enabled -o bosboot=no

RAS ComponentsRAS Components

ReliabilityReliability AvailabilityAvailability ServiceabilityServiceability

Component RASComponent RAS …………

Component TraceComponent Trace Component DumpComponent DumpRuntime Error CheckingRuntime Error Checking

Live DumpLive DumpSystem
Dump
System
Dump

System
Trace
System
Trace

Light
Weight
Memory
Trace

Light
Weight
Memory
Trace

CT Private
Buffers
Trace

CT Private
Buffers
Trace
56 IBM AIX Continuous Availability Features

To access the SMIT FFDC menu, use the fastpath smitty ffdc. The menu is shown in
Example 3-1.

Example 3-1 Advanced FFDC features

Advanced First Failure Data Capture Features

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 Advanced First Failure Data Capture Features [enabled] +
 Run bosboot automatically [no] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

For more information about FFDC, refer to IBM eServer p5 590 and 595 System Handbook,
SG24-9119.

3.2 Lightweight memory trace

This section describes how to use lightweight memory trace (LMT). Lightweight memory trace
is a serviceability feature. It is an important first failure data capture tool, and is most useful to
those with AIX source-code access or a deep understanding of AIX internals.

3.2.1 LMT implementation

As mentioned, Lightweight memory trace (LMT) provides trace information for First Failure
Data Capture (FFDC). It is a constant kernel trace mechanism that records software events
occurring during system life. The system activates LMT at initialization, and then it runs
continuously. Recorded events are saved to per-processor memory trace buffers.

There are two memory trace buffers for each processor: one to record common events, and
one to record rare events. These buffers can be extracted from system dumps or accessed
on a live system by service personnel using the mtrcsave command. The extracted memory
trace buffers can be viewed by using the trcrpt command, with formatting as defined in the
/etc/trcfmt file.

LMT has been carefully implemented such that it has negligible performance impacts. The
impact on the throughput of a kernel-intensive benchmark is just 1%, and is much less for
typical user workloads. LMT requires the consumption of a small amount of pinned kernel
memory. The default amount of memory required for the trace buffers is calculated based on
factors that influence trace record retention.

Lightweight memory trace differs from traditional AIX system trace in several ways. First, it is
more efficient. Second, it is enabled by default, and has been explicitly tuned as a First
Failure Data Capture mechanism. Unlike traditional AIX system trace, you cannot selectively
record only certain AIX trace hook ids with LMT. With LMT, you either record all LMT-enabled
hooks, or you record none.
Chapter 3. AIX advanced continuous availability tools and features 57

This means that traditional AIX system trace is the preferred Second Failure Data Capture
(SFDC) tool, because you can more precisely specify the exact trace hooks of interest, given
knowledge gained from the initial failure.

Traditional AIX system trace also provides options that allow you to automatically write the
trace information to a disk-based file (such as /var/adm/ras/trcfile). Lightweight memory trace
provides no such option to automatically write the trace entries to disk when the memory
trace buffer fills. When an LMT memory trace buffer fills, it “wraps”, meaning that the oldest
trace record is overwritten.

The value of LMT derives from being able to view some history of what the system was doing
prior to reaching the point where a failure is detected. As previously mentioned, each CPU
has a memory trace buffer for common events, and a smaller memory trace buffer for rare
events.

The intent is for the “common” buffer to have a 1- to 2-second retention (in other words, have
enough space to record events occurring during the last 1 to 2 seconds, without wrapping).
The “'rare” buffer should have at least an hour's retention. This depends on workload, and on
where developers place trace hook calls in the AIX kernel source and which parameters they
trace.

Disabling and enabling lightweight memory trace
You can disable lightweight memory trace by using the following command:

/usr/bin/raso -r -o mtrc_enabled=0

You can enable lightweight memory trace by using the following command:

/usr/bin/raso -r -o mtrc_enabled=1

Lightweight Memory Trace memory consumption
The default amount of memory required for the memory trace buffers is automatically
calculated based on factors that influence software trace record retention, with the target
being sufficiently large buffers to meet the retention goals previously described.

There are several factors that may reduce the amount of memory automatically used. The
behavior differs slightly between the 32-bit (unix_mp) and 64-bit (unix_64) kernels. For the
64-bit kernel, the default calculation is limited such that no more than 1/128 of system
memory can be used by LMT, and no more than 256 MB by a single processor.

The 32-bit kernel uses the same default memory buffer size calculations, but further restricts
the total memory allocated for LMT (all processors combined) to 16 MB. Table 3-1 presents
some example LMT memory consumption.

Table 3-1 Lightweight Memory Trace memory consumption

Note: In either case, the boot image must be rebuilt (the bosboot command needs to be
run), and the change does not take effect until the next reboot.

Machine Number of
CPUs

System memory Total LMT
memory: 64-bit
kernel

Total LMT
memory: 32-bit
kernel

POWER3™ (375

MHz CPU)

1 1 GB 8 MB 8 MB

POWER3 (375

MHz CPU)

2 4 GB 16 MB 16 MB
58 IBM AIX Continuous Availability Features

To determine the total amount of memory (in bytes) being used by LMT, enter the following
shell command:

echo mtrc | kdb | grep mt_total_memory

The 64-bit kernel resizes the LMT trace buffers in response to dynamic reconfiguration events
(for POWER4 and above systems). The 32-bit kernel does not resize; it will continue to use
the buffer sizes calculated during system initialization.

Changing memory buffer sizes
For the 64-bit kernel, you can also use the /usr/sbin/raso command to increase or decrease
the memory trace buffer sizes. This is done by changing the mtrc_commonbufsize and
mtrc_rarebufsize tunable variables. These two variables are dynamic parameters, which
means they can be changed without requiring a reboot.

For example, to change the per cpu rare buffer size to sixteen 4 K pages, for this boot as well
as future boots, you would enter:

raso -p -o mtrc_rarebufsize=16

For more information about the memory trace buffer size tunables, refer to raso command
documentation.

For the 32-bit kernel, the options are limited to accepting the default (automatically
calculated) buffer sizes, or disabling LMT (to completely avoid buffer allocation).

Using lightweight memory trace
This section describes various commands which are available to make use of the information
captured by lightweight memory trace. However, keep in mind that LMT is designed to be

POWER5

(1656 MHz CPU,

shared processor

LPAR, 60% ent

cap,

simultaneous

multi-threading

8 logical 16 GB 120 MB 16 MB

POWER5 (1656

MHz CPU)

16 64 GB 512 MB 16 MB

Note: For either kernel, in the rare case that there is insufficient pinned memory to allocate
an LMT buffer when a CPU is being added, the CPU allocation will fail. This can be
identified by a CPU_ALLOC_ABORTED entry in the AIX error log, with detailed data
showing an Abort Cause of 0000 0008 (LMT) and Abort Data of 0000 0000 0000 000C
(ENOMEM).

Note: Internally, LMT tracing is temporarily suspended during any 64-bit kernel buffer
resize operation.

Machine Number of
CPUs

System memory Total LMT
memory: 64-bit
kernel

Total LMT
memory: 32-bit
kernel
Chapter 3. AIX advanced continuous availability tools and features 59

used by IBM service personnel, so these commands (or their new LMT-related parameters)
may not be documented in the standard AIX documentation. So, to help you recall specific
syntax, each command displays a usage string if you enter <command -?>. This section
provides an overview of the commands used to work with LMT.

The LMT memory trace buffers are included in an AIX system dump. You can manipulate
them similarly to traditional AIX system trace buffers. The easiest method is to use the
trcdead command to extract the LMT buffers from the dump. The new -M parameter extracts
the buffers into files in the LMT log directory. The default LMT log directory is
/var/adm/ras/mtrcdir.

If the dump has compression set (on), the dumpfile file needs to be uncompressed with the
dmpuncompress command before running kdb, as shown here:

dmpuncompress dump_file_copy.BZ

For example, to extract LMT buffers from a dump image called dump_file_copy, you can use:

trcdead -M dump_file_copy

Each buffer is extracted into a unique file, with a control file for each buffer type. This is
similar to the per CPU trace option in traditional AIX system trace. As an example, executing
the previous command on a dump of a two-processor system would result in the creation of
the following files:

ls /var/adm/ras/mtrcdir
mtrccommon mtrccommon-1 mtrcrare-0
mtrccommon-0 mtrcrare mtrcrare-1

The new -M parameter of the trcrpt command can then be used to format the contents of
the extracted files. The trcrpt command allows you to look at common file and rare files
separately. Beginning with AIX V5.3 TL5, both common and rare files can be merged
together chronologically.

Continuing the previous example, to view the LMT files that were extracted from the dumpfile,
you can use:

trcrpt -M common

and

trcrpt -M rare

These commands produce large amounts of output, so we recommend that you use the -o
option to save the output to a file.

Other trcrpt parameters can be used in conjunction with the -M flag to qualify the displayed
contents. As one example, you could use the following command to display only VMM trace
event group hook ids that occurred on CPU 1:

trcrpt -D vmm -C 1 -M common

Example 3-2 shows the output of the trcrpt command displaying a VMM trace:

Example 3-2 Output of trcrpt command

trcrpt -D vmm -C 1 -M common
ID CPU ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

1BE 1 141.427476136 141427.476136 VMM pfendout: V.S=0020.31250 ppage=32B20
client_segment commit in progress privatt

P_DEFAULT 4K
60 IBM AIX Continuous Availability Features

 large modlist req (type 0)error=0000

Using the trcrpt command is the easiest and most flexible way to view lightweight memory
trace records.

3.3 The snap command

The snap command gathers AIX system configuration information, error log data, kernel
information and a system dump, if one exists. The information is compressed into a pax file.
The file may then be written to a device such as tape or DVD, or transmitted to a remote
system. The information gathered with the snap command might be required to identify and
resolve system problems. Directory /tmp/ibmsupt contains snap command output.

Snap usage examples
To gather all system configuration information, use:

snap -a

The output of this command is written to the /tmp/ibmsupt directory.

To create a pax image of all files contained in the /tmp/ibmsupt directory, use:

snap -c

To remove snap command output from the /tmp/ibmsupt directory, use:

snap -r

We recommend that you run the snap commands in the following order:

1. Remove old snap command output from /tmp/ibmsupt:
snap -r

2. Gather all new system configuration information:
snap -a

3. Create pax images of all files contained in the /tmp/ibmsupt directory:
snap -c

The snap command has several flags that you can use to gather relevant system information.
For examples, refer to the snap man pages:

man snap

3.4 Minidump facility

A system dump may not always complete successfully for various reasons. If a dump is not
collected at system crash time, it is often difficult to determine the cause of the crash. To
combat this, the minidump facility has been introduced in AIX V5.3 ML3.

A minidump is a small, compressed dump that is stored to NVRAM when the system crashes
or a dump is initiated. It is written to the error log on reboot. The minidump can be used to
observe the system state and perform some debugging if a full dump is not available. It can

Note: The data collected with the snap command is designed to be used by IBM service
personnel.
Chapter 3. AIX advanced continuous availability tools and features 61

also be used to obtain a snapshot of a crash, without having to transfer the entire dump from
the crashed system.

Minidumps will show up as error log entries with a label of MINIDUMP_LOG and a description
of COMPRESSED MINIMAL DUMP.

To view only the minidump entries in the error log, enter this command (see also
Example 3-3):

errpt –J MINIDUMP_LOG

3.4.1 Minidump formatter

A new command mdmprpt provides functionalities to format minidumps. This command has
the following usage:

mdmprpt [-i logfile] [-l seqno] [-r]

When given a sequence number (seqno), the mdmprpt command will format the minidump
with the given sequence number. Otherwise, it will format the most recent minidump in the
error log, if any. It reads the corresponding minidump entry from the error log, and
uncompresses the detail data. It then formats the data into a human-readable output which is
sent to stdout.

The formatted output will start with the symptom string and other header information. Next it
will display the last error log entry, the dump error information if any, and then each CPU, with
an integrated stack (the local variables for each frame, if any, interleaved with the function
name+offset output).

Note the following points:

� A different error log file can be supplied by using the –i flag.

� A different minidump from the most recent one can be displayed using the –l flag,
followed by the sequence number of the error log entry where the minidump is.

� The –r flag is used to display the raw data that was saved to NVRAM and then extracted
to the error log, without decompression or formatting. In general, this is only useful for
debugging problems with minidump itself.

The mdmprpt command will use the uncompressed header of the minidump to correctly
decompress and format the remainder. In the case of a user-initiated dump, the data
gathered will be spread evenly across all CPUs, because the failure point (if any) is unknown.

The size of NVRAM is extremely limited, so the more CPUs on the system, the less data that
will be gathered per CPU. In the case of a dump after a crash, the CPU that crashed will use
up most of the space, and any that remains will be split among the remaining CPUs.

Example 3-3 A minidump - partial output

errpt -J MINIDUMP_LOG
IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION
F48137AC 1002144807 U O minidump COMPRESSED MINIMAL DUMP

Note: The mdmprpt command requires a raw error log file; it cannot handle output from the
errpt command.

Example 3-3 on page 62 displays partial output from a minidump. The –g flag will tell snap
to gather the error log file.
62 IBM AIX Continuous Availability Features

mdmprpt |more
MINIDUMP VERSION 4D32

64-bit Kernel, 10 Entries

Last Error Log Entry:
 Error ID: A924A5FC Resource Name: SYSPROC
 Detail Data: 0000000600000000 0004A09800000004
 000000042F766172 2F61646D2F726173
 2F636F7265000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 0000000000000000
 0000000000000000 00000000736C6565
 7000000000000000 0000000000000000
 0000000000000000 0000000000007473
 7461727420314630 0A00000000000000
 0000000000000000 0000000000000020
 2068775F6672755F 69643A204E2F410A
 202068775F637075 5F69643A204E2F41
 0A00000000000000 0000000000000000
 00006E736C656570 203235340A3F3F0A
 736C656570203843 0A6D61696E203138
 340A5F5F73746172 742036430AFFDC00
 0100000000000000 0700000003353736
 3545363230300000 0000043532300000
 0000105350493200 00000023736C6565
 70000000002B0000 0006000000236E73
 6C65657000000000 2900000254

Symptom Information:
 Crash Location: [000000000042E80C] unknown
 Component: COMP Exception Type: 267

Data From CPU #0

MST State:
 R0: 000000000018F3E0 R1: F00000002FF46B80 R2: 0000000002C159B0
 R3: 00000000000110EE R4: 0000000000000004 R5: 00000000FFFFFFFE
 R6: 0000000000010000 R7: 0000000000000100 R8: 0000000000000106
Chapter 3. AIX advanced continuous availability tools and features 63

3.5 Live dump and component dump

Live dump and component dump capabilities are provided to allow failure data to be dumped
without taking down the entire system. Listed here are the most frequent uses of these
dumps:

� From the command line.

The system administrator issues the livedumpstart command to dump data related to a
failure.

� For recovery.

A subsystem wants to dump data pertaining to the failure before recovering. (This ability is
only available to the kernel and kernel extensions.)

The command dumpctrl can be used manage system dumps and live dumps. The command
also has several flags and options; refer to the dumpctrl man pages (man dumpctrl) for more
information.

The component dump allows the user, subsystem, or system administrator to request that
one or more components be dumped. When combined with the live dump functionality,
component dump allows components to be dumped, without bringing down the entire system.

When combined with the system dump functionality, component dump allows you to limit the
size of the system dump or disaster dump.

Note that the main users of these functions are IBM service personnel. Examples of the live
dump and component dump functions are provided here so that you can perform these
dumps if requested.

3.5.1 Dump-aware components

Depending on system type and configuration, many different types of dump-aware
components can exist. Later releases of AIX may add or delete components that exist on
current releases. The following list describes a few important components.

In our case, our test system had the following dump-aware components:

� Inter-process communication (ipc)

The ipc component currently has following subcomponents: semaphores data (sem);
shared memory segments data (shm); message queues data (msg).

� Virtual memory manager (vmm)

The vmm component currently has the following subcomponents: frame set data (frs);
memory pool data (memp); paging device data (pdt); system control data (pfhdata); page
size data (pst); interval data (vmint); kernel data (vmker); resource pool data (vmpool).

� Enhanced journaled file system (jfs2)

The jfs2 component currently has the following subcomponents: file system data; log data.

� Logical file system (lfs)

The lfs component currently has the following subcomponents: file system data; pile data;
General Purpose Allocator Interface (gpai) data (gpai is a collector of fifo, vfs, and vnode
data).
64 IBM AIX Continuous Availability Features

� Logical Volume Manager (lvm)

The lvm component currently has the following subcomponents: rootvg data; other volume
groups configured on the system.

� Process information (proc)

The proc component currently has one subcomponent called watchdog. Watchdog is a
kernel timer service.

� SCSI disk (scsidisk)

This component represents the SCSI disk connected on the system, and it has
subcomponents like hdisk0 and other disks, depending the configuration.

� Virtual SCSI (vscsi_initdd)

This component represents the virtual SCSI connected on the system, and it has
subcomponents like vscsi0 and other virtual SCSI devices, depending the configuration.

To see component-specific live dump attributes and system dump attributes on the system,
you can use the dumpctrl -qc command; sample output is shown in Example 3-4.

Example 3-4 The output of dumpctrl -qc command

dumpctrl -qc
---+------+-----------+------------
 | Have | Live Dump | System Dump
 Component Name |Alias | /level | /level
---+------+-----------+------------
dump
 .livedump | YES | OFF/3 | ON/3
errlg | NO | OFF/3 | ON/3
ipc
 .msg | YES | ON/3 | OFF/3
 .sem | YES | ON/3 | OFF/3
 .shm | YES | ON/3 | OFF/3
jfs2 | NO | ON/3 | OFF/3
 filesystem
 __1
 .inode | NO | ON/3 | OFF/3
 .snapshot | NO | ON/3 | OFF/3
 _admin_9
 .inode | NO | ON/3 | OFF/3
 .snapshot | NO | ON/3 | OFF/3
 _home_8
 .inode | NO | ON/3 | OFF/3
 .snapshot | NO | ON/3 | OFF/3
 _opt_11
 .inode | NO | ON/3 | OFF/3
 .snapshot | NO | ON/3 | OFF/3
 _tmp_5
 .inode | NO | ON/3 | OFF/3
 .snapshot | NO | ON/3 | OFF/3
 _usr_2
 .inode | NO | ON/3 | OFF/3
 .snapshot | NO | ON/3 | OFF/3
 _var_4
 .inode | NO | ON/3 | OFF/3
 .snapshot | NO | ON/3 | OFF/3
 log
 .A_3 | NO | ON/3 | OFF/3
Chapter 3. AIX advanced continuous availability tools and features 65

lfs
 filesystem
 ._0 | NO | ON/3 | OFF/3
 .__1 | NO | ON/3 | OFF/3
 ._admin_9 | NO | ON/3 | OFF/3
 ._home_8 | NO | ON/3 | OFF/3
 ._mksysb_16 | NO | ON/3 | OFF/3
 ._opt_11 | NO | ON/3 | OFF/3
 ._proc_10 | NO | ON/3 | OFF/3
 ._tmp_5 | NO | ON/3 | OFF/3
 ._usr_2 | NO | ON/3 | OFF/3
 ._var_4 | NO | ON/3 | OFF/3
 gpai
 .fifo | NO | ON/3 | OFF/3
 .vfs | NO | ON/3 | OFF/3
 .vnode | NO | ON/3 | OFF/3
 pile
 .NLC128 | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .NLC256 | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .NLC64 | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .PATH1024 | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .PATH128 | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .PATH256 | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .PATH512 | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .PATH64 | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .bmIOBufPile | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .bmXBufPile | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .dioCache | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .dioPIOVPile | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .dioReq | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .iCache | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .j2SnapBufPool | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .j2VCBufferPool | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .logxFreePile | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
 .txLockPile | NO | ON/3 | OFF/3
 .metadata | NO | ON/3 | OFF/3
lvm | NO | ON/3 | ON/3
 .rootvg | NO | ON/3 | ON/3
 .metadata | NO | ON/3 | ON/3
 .lvs | NO | ON/3 | ON/3
 .hd1 | NO | ON/3 | ON/3
 .hd10opt | NO | ON/3 | ON/3
 .hd11admin | NO | ON/3 | ON/3
66 IBM AIX Continuous Availability Features

 .hd2 | NO | ON/3 | ON/3
 .hd3 | NO | ON/3 | ON/3
 .hd4 | NO | ON/3 | ON/3
 .hd5 | NO | ON/3 | ON/3
 .hd6 | NO | ON/3 | ON/3
 .hd8 | NO | ON/3 | ON/3
 .hd9var | NO | ON/3 | ON/3
 .rootvg_dalv | NO | ON/3 | ON/3
 .sysdump0 | NO | ON/3 | ON/3
 .pvs | NO | ON/3 | ON/3
 .hdisk0 | NO | ON/3 | ON/3
 .userdata | NO | ON/3 | ON/3
 .lvs | NO | ON/3 | ON/3
 .hd1 | NO | ON/3 | ON/3
 .hd10opt | NO | ON/3 | ON/3
 .hd11admin | NO | ON/3 | ON/3
 .hd2 | NO | ON/3 | ON/3
 .hd3 | NO | ON/3 | ON/3
 .hd4 | NO | ON/3 | ON/3
 .hd5 | NO | ON/3 | ON/3
 .hd6 | NO | ON/3 | ON/3
 .hd8 | NO | ON/3 | ON/3
 .hd9var | NO | ON/3 | ON/3
 .rootvg_dalv | NO | ON/3 | ON/3
 .sysdump0 | NO | ON/3 | ON/3
 .pvs | NO | ON/3 | ON/3
 .hdisk0 | NO | ON/3 | ON/3
proc
 .watchdog | NO | ON/3 | OFF/3
scsidiskdd | NO | ON/3 | ON/3
 .hdisk0 | YES | ON/3 | ON/3
vmm
 .frs | YES | ON/3 | OFF/3
 .frs0 | YES | ON/3 | OFF/3
 .frs1 | YES | ON/3 | OFF/3
 .frs2 | YES | ON/3 | OFF/3
 .frs3 | YES | ON/3 | OFF/3
 .frs4 | YES | ON/3 | OFF/3
 .frs5 | YES | ON/3 | OFF/3
 .frs6 | YES | ON/3 | OFF/3
 .frs7 | YES | ON/3 | OFF/3
 .memp | YES | ON/3 | OFF/3
 .memp0 | YES | ON/3 | OFF/3
 .memp1 | YES | ON/3 | OFF/3
 .pdt | YES | ON/3 | OFF/3
 .pdt0 | YES | ON/3 | OFF/3
 .pdt80 | YES | ON/3 | OFF/3
 .pdt81 | YES | ON/3 | OFF/3
 .pdt82 | YES | ON/3 | OFF/3
 .pdt83 | YES | ON/3 | OFF/3
 .pdt84 | YES | ON/3 | OFF/3
 .pdt85 | YES | ON/3 | OFF/3
 .pdt86 | YES | ON/3 | OFF/3
 .pdt87 | YES | ON/3 | OFF/3
 .pdt88 | YES | ON/3 | OFF/3
 .pdt89 | YES | ON/3 | OFF/3
 .pdt8A | YES | ON/3 | OFF/3
 .pfhdata | YES | ON/3 | OFF/3
 .pst | YES | ON/3 | OFF/3
 .vmint | YES | ON/3 | OFF/3
Chapter 3. AIX advanced continuous availability tools and features 67

 .vmker | YES | ON/3 | OFF/3
 .vmpool | YES | ON/3 | OFF/3
 .vmpool0 | YES | ON/3 | OFF/3
 .vmpool1 | YES | ON/3 | OFF/3
vscsi_initdd
 .vscsi0 | YES | ON/3 | ON/3
 .lun8100000000000000 | NO | ON/3 | ON/3

3.5.2 Performing a live dump

This section explains how to perform a live dump or component dump, and uses examples to
clarify the tasks.

You can access the SMIT main menu of Component/Live Dump by using the smitty
livedump command. The menu is shown in Example 3-5.

Example 3-5 Component / Live Dump Main Menu

Component / Live Dump

Move cursor to desired item and press Enter.

 Start a Live Dump
 List Components that are Dump Aware
 List Live Dumps in the Live Dump Repository
 Change/Show Global Live Dump Attributes
 Change/Show Dump Attributes for a Component
 Change Dump Attributes for multiple Components
 Refresh the Kernel's List of Live Dumps
 Display Persistent Customizations

F1=Help F2=Refresh F3=Cancel
F8=Image
F9=Shell F10=Exit Enter=Do

For example, if you are requested to run a live dump of virtual memory managers paging
device data (vmm.pdt), you would use the smitty livedump menu and the Start a Live Dump
submenu. The menu is shown in Example 3-6.

Example 3-6 Start a Live Dump submenu

Start a Live Dump

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 Component Path Names
 Component Logical Alias Names [@pdt]
 Component Type/Subtype Identifiers []
 Pseudo-Component Identifiers []
 Error Code []
 Symptom String [any-description]
 File Name Prefix []
 Dump Priority [critical] +
 Generate an Error Log Entry [yes] +
68 IBM AIX Continuous Availability Features

 Dump Types [serialized] +
 Force this Dump [yes] +
 Dump Subcomponents [yes] +
 Dump Parent Components [no] +
 Obtain a Size Estimate [no] +
 (no dump is taken)
 Show Parameters for Components [no] +
 (no dump is taken)

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Table 3-2 provides guidelines for filling in the menu fields.

Table 3-2 Guidelines for filling in Start a Live Dump submenu

Menu field Explanation

Component Path Names Can be found by output of dumpctrl. For instance, ipc.msg is a component path name.
Not needed if any of Alias/Type/Pseudo-component is specified. Placing an at (@) sign
in front of the component specifies that it is the failing component (to replace the
nocomp in the file name).

Component Logical Alias
Names

Can be found by output of dumpctrl for those components where Have Alias is listed
as YES. For instance, msg is a valid Alias. Not needed if any of Path
Name/Type/Pseudo-component is specified. Placing an at (@) sign before the alias
specifies it as the failing component (to replace the nocomp in the file name).

Component Type/Subtype
Identifiers

Specify type/subtypes from /usr/include/sys/ rasbase.h. Not all types or subtypes map
to valid livedump components.

Pseudo-Component
Identifiers

Built-in components not present in dumpctrl -qc. A list of them can be obtained by
selecting the help for this topic. They require parameters to be specified with the
identifiers. Details about the parameters are provided by an error message if you do
not specify the parameters. Not needed if any of Path Name/Alias/Type is specified.

 Error Code Optional string to include inside dump.

Symptom String Mandatory string that describes the nature of the live dump.

File Name Prefix Prefix to append to a file name.

Dump Priority Choice of critical/info. Critical dumps may delete info dumps if there is not enough room
in the filesystem. Critical dumps can also be held in kernel memory.

Generate an Error Log Entry Whether or not to generate an error log entry in the event of live dump completion.

Dump Types Serialized is the only valid option in 6.1.

Force this Dump Applies to whether or not duplicate elimination can potentially abort this live dump.

Dump Subcomponents For any components specified by Path Name/Alias/Type, whether or not to dump their
subcomponents. Subcomponents appear under and to the right of other components
in dumpctrl -qc. (For instance, ipc.sem and ipc.msg are subcomponents of ipc.)

Dump Parent Components For any components specified by Path Name/Alias/Type, whether or not to dump their
parent components. (For instance, the parent of ipc.sem is ipc.)

Obtain a Size Estimate Do not take a dump, just get an estimate for the compressed size. (No dump is taken)

Show Parameters for
Components

If a component has help related to it, show that help information.
Chapter 3. AIX advanced continuous availability tools and features 69

The output of Start a Live Dump is shown in Example 3-7.

Example 3-7 Output of executing Start a Live Dump menu

COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

The dump is in file /var/adm/ras/livedump/pdt.200710111501.00.DZ.

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next

Before the dump file can be analyzed, it needs to be uncompressed with the dmpuncompress
command. Output from a dmpuncompress command is shown Example 3-8.

Example 3-8 Uncompress the dumpfile

ls -l /var/adm/ras/livedump/pdt.200710111501.00.DZ
-rw------- 1 root system 4768 Oct 11 10:24
/var/adm/ras/livedump/pdt.200710111501.00.DZ
dmpuncompress /var/adm/ras/livedump/pdt.200710111501.00.DZ
 -- replaced with /var/adm/ras/livedump/pdt.200710111501.00
#

You can use the kdb command to analyze a live dump file. Output from a kdb command is
shown in Example 3-9.

Example 3-9 Analyzing a live dump using the kdb command

kdb /var/adm/ras/livedump/pdt.200710111501.00
kdb /var/adm/ras/livedump/pdt.200710111501.00
/var/adm/ras/livedump/pdt.200710111501.00 mapped from @ 700000000000000 to @
70000000000cd88
Preserving 1675375 bytes of symbol table [/unix]
Component Names:
 1) dump.livedump.header [3 entries]
 2) dump.livedump.sysconfig [3 entries]
 3) vmm.pdt [14 entries]
 4) vmm.pdt.pdt8B [2 entries]
 5) vmm.pdt.pdt8A [2 entries]
 6) vmm.pdt.pdt89 [2 entries]
 7) vmm.pdt.pdt88 [2 entries]
 8) vmm.pdt.pdt87 [2 entries]
 9) vmm.pdt.pdt86 [2 entries]
10) vmm.pdt.pdt81 [2 entries]
11) vmm.pdt.pdt82 [2 entries]
12) vmm.pdt.pdt85 [2 entries]
13) vmm.pdt.pdt84 [2 entries]
14) vmm.pdt.pdt83 [2 entries]
15) vmm.pdt.pdt80 [2 entries]
16) vmm.pdt.pdt0 [2 entries]
17) cu [2 entries]
Live Dump Header:
 Passes: 1
 Type: LDT_FORCE
70 IBM AIX Continuous Availability Features

 Priority: LDPP_CRITICAL
 Error Code: 0
 Failing Component: pdt
 Symptom: any-description
 Title:
 START END <name>
0000000000001000 0000000003FB0000 start+000FD8
F00000002FF47600 F00000002FFDF940 __ublock+000000
000000002FF22FF4 000000002FF22FF8 environ+000000
000000002FF22FF8 000000002FF22FFC errno+000000
F100080700000000 F100080710000000 pvproc+000000
F100080710000000 F100080718000000 pvthread+000000
PFT:
PVT:
Unable to find kdb context
Dump analysis on CHRP_SMP_PCI POWER_PC POWER_6 machine with 2 available CPU(s) (64-bit
registers)
Processing symbol table...
.......................done
cannot read vscsi_scsi_ptrs
(0)>

Using command line functions - example
Here, assume that I/O to the virtual disk hdisk0 is hanging. A live dump is taken to
supplement any information recorded in the AIX error log. The live dump includes state
information about hdisk0, state information about the underlying virtual SCSI adapter (vscsi0)
and its LUN subcomponent, and the Component Trace buffer associated with vscsi0. hdisk1
is considered the failing component. The command is shown in Example 3-10.

Example 3-10 Command line example of livedumpstart command

livedumpstart -L hdisk0 -l vscsi0+ -p comptrace:vscsi0,0 symptom="failing_io"
title="Sample Live Dump"
0453-142 The dump is in file /var/adm/ras/livedump/hdisk0.200710121432.00.DZ

3.6 Concurrent AIX Update

Concurrent AIX Update allows fixes to the base kernel and kernel extensions to be applied
and simultaneously become fully operational on a running system. The system does not
require any subsequent reboot to activate fixes. Concurrent AIX Update allows the following
significant enhancements:

� The ability to apply preventive maintenance or corrective service fix without requiring a
reboot.

� The ability to reject an applied fix without requiring a reboot.
� The ability to inject diagnostics or temporary circumventions without requiring a reboot.
� Encourages customer adoption of corrective services and thereby decreases outages for

which fixes existed.
� Improves customer satisfaction.
� Improves system uptime.

3.6.1 Concurrent AIX Update terminology

Table 3-3 on page 72 lists Concurrent AIX Update terms and definitions.
Chapter 3. AIX advanced continuous availability tools and features 71

Table 3-3 Concurrent update terminology

3.6.2 Concurrent AIX Update commands and SMIT menus

The customer will manage Concurrent AIX Updates by using the emgr command. The emgr
command has several flags; for additional information about the flags, refer to the man pages
(use the man emgr command). You can also obtain limited help information by simply entering
the emgr command.

Concurrent updates are packaged by using the epkg command. The epkg command also has
multiple flags; for additional information about the flags refer to the man pages (use the man
epkg command). You can also obtain limited help information by simply entering the epkg
command.

The SMIT menus
You can access the emgr main menu by using the smitty emgr command. The menu is
shown in Example 3-11.

Example 3-11 EFIX Management main menu

EFIX Management

Move cursor to desired item and press Enter.

 List EFIXES and Related Information
 Install EFIX Packages
 Remove Installed EFIXES

Term Definition

Concurrent AIX
Update

An update to the in-memory image, update of the base kernel and/kernel
extensions that is immediately active or subsequently inactive without reboot.
Synonyms: hotpatch, live update, online update.

Control file A text file that contains all information required by emgr command to perform any
update, whether concurrent or not.

Timestamp The timestamp recorded within the XCOFF header of the module targeted for
updating. It is used to validate that the ifix was created for the proper module
level.

Description file A text file derived from the emgr control file, and which contains only
information relevant to Concurrent AIX Update. The kpatch command requires
this file to apply a Concurrent AIX Update.

Fix or patch Interchangeably used to refer to a software modification created to resolve a
customer problem.

ifix Interim fix. Package delivered for customer for temporary fixes.
Synonym: efix

Kernel extension Used to refer both kernel extensions and device drivers.

Module An executable such as the kernel or a kernel extension.

Patchset The complete set of patches composing a fix.

Target or target
module

An executable that is to be patched (kernel or kernel extension).
72 IBM AIX Continuous Availability Features

 Check Installed EFIXES

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do

From the List EFIXES and Related Information menu, you can select an emergency fix (EFIX)
to be listed by the EFIX label, EFIX ID, or virtually unique ID (VUID). The menu is shown in
Example 3-12.

Example 3-12 List EFIXES and Related Information menu

List EFIXES and Related Information

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 EFIX Label [ALL] +

 VERBOSITY Level [1] +
 DEBUG output? no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

From the Install EFIX Packages menu, you can specify the location of the emergency fix
(EFIX) package to be installed or previewed. The EFIX package should be a file created with
the epkg command. The menu is shown in Example 3-13.

Example 3-13 Install EFIX Packages menu

 Install EFIX Packages

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 LOCATION of EFIX Package [] /
 -OR-
 LOCATION of Package List File [] /

 PREVIEW only? (install operation will NOT occur) no +
 MOUNT Installation? no +
 EXTEND file systems if space needed? yes +
 DEBUG output? no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Important: Concurrent update package files will have a name ending with *.epkg.Z. These
files are compressed and should not be uncompressed before installation.
Chapter 3. AIX advanced continuous availability tools and features 73

We tested the installation of an efix called beta_patch.070909.epkg.Z. We placed the efix file
in the /usr/emgrdata/efixdata directory for the installation. The output of the installation test is
shown in Example 3-14.

Example 3-14 Output of EFIX installation menu

 COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

[TOP]
+---+
Efix Manager Initialization
+---+
Initializing log /var/adm/ras/emgr.log ...
Efix package file is: /usr/emgrdata/efixdata/beta_patch.070909.epkg.Z
MD5 generating command is /usr/bin/csum
MD5 checksum is a7710363ad00a203247a9a7266f81583
Accessing efix metadata ...
Processing efix label "beta_patch" ...
Verifying efix control file ...
+---+
Installp Prerequisite Verification
+---+
No prerequisites specified.
Building file-to-package list ...

+---+
Efix Attributes
+---+
LABEL: beta_patch
PACKAGING DATE: Sun Sep 9 03:21:13 CDT 2007
ABSTRACT: CU ifix for cu_kext
PACKAGER VERSION: 6
VUID: 00C6CC3C4C00090903091307
REBOOT REQUIRED: no
BUILD BOOT IMAGE: no
PRE-REQUISITES: no
SUPERSEDE: no
PACKAGE LOCKS: no
E2E PREREQS: no
FIX TESTED: no
ALTERNATE PATH: None
EFIX FILES: 1

Install Scripts:
 PRE_INSTALL: no
 POST_INSTALL: no
 PRE_REMOVE: no
 POST_REMOVE: no

File Number: 1
 LOCATION: /usr/lib/drivers/cu_kext
 FILE TYPE: Concurrent Update
 INSTALLER: installp (new)
 SIZE: 8
ACL: root:system:755
 CKSUM: 60788
74 IBM AIX Continuous Availability Features

 PACKAGE: None or Unknown
 MOUNT INST: no

+---+
Efix Description
+---+
CU ifix - test ifix for /usr/lib/drivers/cu_kext

+---+
Efix Lock Management
+---+
Checking locks for file /usr/lib/drivers/cu_kext ...

All files have passed lock checks.

+---+
Space Requirements
+---+
Checking space requirements ...

Space statistics (in 512 byte-blocks):
File system: /usr, Free: 3310192, Required: 1250, Deficit: 0.
File system: /tmp, Free: 1041216, Required: 2486, Deficit: 0.

+---+
Efix Installation Setup
+---+
Unpacking efix package file ...
Initializing efix installation ...

+---+
Efix State
+---+
Setting efix state to: INSTALLING

+---+
Efix File Installation
+---+
Installing all efix files:
Installing efix file #1 (File: /usr/lib/drivers/cu_kext) ...

Total number of efix files installed is 1.
All efix files installed successfully.

+---+
Package Locking
+---+
Processing package locking for all files.
File 1: no lockable package for this file.

All package locks processed successfully.

+---+
Reboot Processing
+---+
Reboot is not required by this efix package.

+---+
Efix State
+---+
Chapter 3. AIX advanced continuous availability tools and features 75

Setting efix state to: STABLE

+---+
Operation Summary
+---+
Log file is /var/adm/ras/emgr.log

EPKG NUMBER LABEL OPERATION RESULT
=========== ============== ================= ==============
1 beta_patch INSTALL SUCCESS

Return Status = SUCCESS

With the Remove Installed EFIXES menu, you can select an emergency fix to be
removed.The menu is shown in Example 3-15.

Example 3-15 Remove Installed EFIXES menu

 Remove Installed EFIXES

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 EFIX Label [] +
 -OR-
 LOCATION of EFIX List File [] /

 PREVIEW only? (remove operation will NOT occur) yes +
 EXTEND file systems if space needed? yes +
 DEBUG output? no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

We also tested the removal of the efix. Part of the output from the test is shown in
Example 3-16.

Example 3-16 Partial output of Remove Installed EFIXES menu

 COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

[TOP]
+---+
Efix Manager Initialization
+---+
Initializing log /var/adm/ras/emgr.log ...
Accessing efix metadata ...
Processing efix label "beta_patch" ...

+---+
Efix Attributes
+---+
76 IBM AIX Continuous Availability Features

LABEL: beta_patch
INSTALL DATE: 10/11/07 15:36:45
[MORE...87]

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next

From the Check Installed EFIXES menu, you can select the fixes to be checked. The menu is
shown in Example 3-17.

Example 3-17 Check Installed EFIXES menu

 Check Installed EFIXES

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 EFIX Label [] +
 -OR-
 LOCATION of EFIX List File [] /

 VERIFICATION Level [1] +
 DEBUG output? no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

3.7 Storage protection keys

Storage protection keys are designed to alleviate software issues that can appear because of
memory overlays and addressing errors. In AIX, a large global address space is shared
among a variety of software components and products.

This section explains storage protection keys and describes how kernel programmers or
application programmers use them. The storage protection key concept was adopted from
the z/OS® and 390 systems, so AIX can confidently rely on this feature and its robustness.

3.7.1 Storage protection keys overview

Storage protection keys and their support by the AIX kernel are new capabilities introduced
with AIX Version 5.3 (user keys) and Version 6.1 (user and kernel keys) running on POWER6
hardware. In this paper, storage protection keys are also called storage keys or simply keys.
Keys provide a context-sensitive storage protection mechanism for virtual memory pages.

Software might use keys to protect multiple classes of data individually and to control access
to data on a per-context basis. This differs from the older page protection mechanism, which
is global in nature.

Storage keys are available in both kernel-mode and user-mode application binary interfaces
(ABIs). In kernel-mode ABIs, storage key support is known as kernel keys. In user space
Chapter 3. AIX advanced continuous availability tools and features 77

mode, storage keys are called user keys. A kernel extension may have to deal with both types
of keys.

A memory protection domain generally uses multiple storage protection keys to achieve
additional protection. AIX Version 6.1 divides the system into four memory protection
domains, as described here:

Kernel public This term refers to kernel data that is available without restriction to
the kernel and its extensions, such as stack, bss, data, and areas
allocated from the kernel or pinned storage heaps.

Kernel private This term refers to data that is largely private within the AIX kernel
proper, such as the structures representing a process.

Kernel extension This term refers to data that is used primarily by kernel extensions,
such as file system buf structures.

User This term refers to data in an application address space that might be
using key protection to control access to its own data.

One purpose of the various domains (except for kernel public) is to protect data in a domain
from coding accidents in another domain. To a limited extent, you can also protect data within
a domain from other subcomponents of that domain. When coding storage protection into a
kernel extension, you can achieve some or all of the following RAS benefits:

� Protect data in user space from accidental overlay by your extension

� Respect private user key protection used by an application to protect its own private data

� Protect kernel private data from accidental overlay by your extension

� Protect your private kernel extension data from accidental overlay by the kernel, by other
kernel extensions, and even by subcomponents of your own kernel extension

Design considerations
The AIX 64-bit kernel makes extensive use of a large flat address space by design. It
produces a significant performance advantage, but also adds Reliability, Accessibility and
Serviceability (RAS) costs.

Storage keys were introduced into PowerPC architecture to provide memory isolation while
still permitting software to maintain a flat address space. Large 64-bit applications, such as
DB2, use a global address space for similar reasons and also face issues with memory
overlays.

Storage keys allow an address space to be assigned context-specific protection. Access to
the memory regions can be limited to prevent and catch illegal storage references. PowerPC
hardware assigns protection keys to virtual pages. The keys are identifiers of a memory
object class. These keys are kept in memory translation tables. They are also cached in
translation look-aside buffers (TLBs) and in effect to real TLBs (ERATs).

A new CPU special purpose register known as the Authority Mask Register (AMR) has been
added to define the keyset that the CPU has access to. The AMR is implemented as a bit
pairs vector indexed by key number, with distinct bits to control read and write access for
each key. The key protection is in addition to the existing page protection mechanism.

Note: Storage protection keys are not meant to be used as a security mechanism. Keys
are used following a set of voluntary protocols by which cooperating subsystem designers
can better detect, and subsequently repair, programming errors.
78 IBM AIX Continuous Availability Features

For any load/store, the CPU retrieves the memory key assigned to the targeted page during
the translation process. The key number is used to select the bit pair in the AMR that defines
if an access is permitted. A data storage interrupt results when this check fails.

The AMR is a per-context register that can be updated efficiently. The TLB/ERAT contains
storage key values for each virtual page. This allows AMR updates to be efficient, because
they do not require TLB/ERAT invalidation. The POWER hardware enables a mechanism
that software can use to efficiently change storage accessibility.

Ideally, each storage key would correspond to a hardware key. However, due to the limited
number of hardware keys with current Power Architecture, more than one kernel key is
frequently mapped to a given hardware key. This key mapping or level of indirection may
change in the future as architecture supports more hardware keys.

Another advantage that indirection provides is that key assignments can be changed on a
system to provide an exclusive software-to-hardware mapping for a select kernel key. This is
an important feature for testing fine granularity keys. It could also be used as an SFDC tool.
Kernel keys provide a formalized and abstracted API to map kernel memory classes to a
limited number of hardware storage keys.

For each kernel component, data object (virtual pages) accessibility is determined. Then
component entry points and exit points may be wrapped with “protection gates”. Protection
gates change the AMR as components are entered and exited, thus controlling what storage
can be accessed by a component.

At configuration time, the module initializes its kernel keyset to contain the keys required for
its runtime execution. The kernel keyset is then converted to a hardware keyset. When the
module is entered, the protection gates set the AMR to the required access authority
efficiently by using a hardware keyset computed at configuration time.

User keys work in application programs. The keys are a virtualization of the PowerPC storage
hardware keys. Access rights can be added and removed from a user space AMR, and an
user key can be assigned as appropriate to an application’s memory pages. Management
and abstraction of user keys is left to application developers.

3.7.2 System management support for storage keys

You can use smitty skeyctl to disable (keys are enabled by default) Kernel keys, as shown
in Example 3-18.

Example 3-18 Storage protection keys SMIT menu

Storage Protection Keys

Move cursor to desired item and press Enter.

 Change/Show Kernel Storage Protection Keys State

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do

Note: You may want to disable kernel keys if one of your kernel extensions is causing key
protection errors but you need to be able to run the system even though the error has not
been fixed.
Chapter 3. AIX advanced continuous availability tools and features 79

Example 3-19 shows the SMIT menu for the current storage key setting.

Example 3-19 SMIT menu to check current storage key setting

Change/Show Kernel Storage Protection Keys State

Move cursor to desired item and press Enter.

 Show Kernel Storage Protection Keys State
 Change Next Boot Kernel Storage Protection Keys State

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do

The current storage key setting for our test system is shown in Example 3-20.

Example 3-20 Current storage key setting

COMMAND STATUS

Command: OK stdout: yes stderr: no

Before command completion, additional instructions may appear below.

Current Kernel Storage Protection Keys State is enabled.
Next Boot Kernel Storage Protection Keys State is default.

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next

You can change the next boot storage key setting by using the second option of the SMIT
menu shown in Example 3-19.

3.7.3 Kernel mode protection keys

Kernel keys provide a Reliability function by limiting the damage that a software component
can do to other parts of the system. The keys will prevent kernel extensions from damaging
core kernel components, and provide isolation between kernel extension classes. Kernel
keys will also help provide a significant Availability function by helping to prevent error
propagation.

Note: Although you may be able to use the command line for checking and altering storage
key settings, this is not supported for direct use. Only SMIT menus are supported.
80 IBM AIX Continuous Availability Features

Serviceability is enhanced by detecting memory addressing errors closer to their origin.
Kernel keys allow many random overlays to be detected when the error occurs, rather than
when the corrupted memory is used.

With kernel key support, the AIX kernel introduces kernel domains and private memory
access. Kernel domains are component data groups that are created to segregate sections of
the kernel and kernel extensions from each other. Hardware protection of kernel memory
domains is provided and enforced. Also, global storage heaps are separated and protected.
This keeps heap corruption errors within kernel domains.

There are also private memory keys that allow memory objects to be accessed only by
authorized components. In addition to RAS benefits, private memory keys are a tool to
enforce data encapsulation. There is a static kernel key-to-storage key mapping function set
by the kernel at boot time. This mapping function is dependent on the number of storage keys
that are present in the system.

Analogy
To understand the concept of kernel storage keys, consider a simple analogy. Assume there
is a large house (the kernel) with many rooms (components and device drivers) and many
members (kernel processes and kernel execution path), and each member has keys only for
a few other selected rooms in addition to its own room (keyset).

Therefore, members having a key for a room are considered safe to be allowed inside. Every
time a member wants to enter a room, the member needs to see whether its keyset contains
a key for that room.

If the member does not have the corresponding key, it can either create a key which will
permit the member to enter the room (which means it will add the key to its keyset). Or the
member can try to enter without a key. If the member tries to enter without a key, an alarm will
trip (cause a DSI/Kernel crash) and everything will come to a halt because one member (a
component or kernel execution path) tried to intrude into an unauthorized room.

Kernel keys
The kernel's data is classified into kernel keys according to intended use. A kernel key is a
software key that allows the kernel to create data protection classes, regardless of the
number of hardware keys available. A kernel keyset is a representation of a collection of
kernel keys and the desired read or write access to them. Remember, several kernel keys

Note: Kernel and kernel extensions are not necessarily protected from other kernel
extensions. Kernel and kernel extensions are only protected (to the extent possible) from
key-safe extensions. For details about protection degrees, refer to 3.7.4, “Degrees of
storage key protection and porting considerations” on page 84, which describes key-safe
and key-unsafe kernel extensions.

Furthermore, key-unsafe extensions’ access rights are also somewhat limited. In
particular, certain kernel parts appear only as read-only to the key-unsafe kernel
extensions.

Note: Kernel keys are not intended to provide a security function. There is no infrastructure
provided to authorize access to memory. The goal is to detect and prevent accidental
memory overlays. The data protection kernel keys provide can be circumvented, but this is
by design. Kernel code, with the appropriate protection gate, can still access any memory
for compatibility reasons.
Chapter 3. AIX advanced continuous availability tools and features 81

might share a given hardware key. Most kernel keys are for use only within the kernel (the full
list can be found in sys/skeys.h). Table 3-4 shows the kernel keys that are likely to be useful to
kernel extension developers.

Table 3-4 Useful kernel keys

Kernel keysets

Because the full list of keys might evolve over time, the only safe way to pick up the set of
keys necessary for a typical kernel extension is to use one of the predefined kernel keysets,
as shown the following list.

KKEYSET_KERNEXT The minimal set of keys needed by a kernel extension.
KKEYSET_COMMO Keys needed for a communications or network driver.
KKEYSET_BLOCK Keys needed for a block device driver.
KKEYSET_GRAPHICS Keys needed for a graphics device driver.
KKEYSET_USB Keys needed for a USB device driver.

See sys/skeys.h for a complete list of the predefined kernel keysets. These keysets provide
read and write access to the data protected by their keys. If you want simply read access to
keys, those sets are named by appending _READ (as in KKEYSET_KERNEXT_READ).

Key name Description

KKEY_PUBLIC This kernel key is always necessary for access to a program's stack, bss,
and data regions. Data allocated from the pinned_heap and the
kernel_heap is also public.

KKEY_BLOCK_DEV This kernel key is required for block device drivers. Their buf structs must
be either public or in this key.

KKEY_COMMO This kernel key is required for communication drivers. CDLI structures must
be either public or in this key.

KKEY_NETM This kernel key is required for network and other drivers to reference
memory allocated by net_malloc.

KKEY_USB This kernel key is required for USB device drivers.

KKEY_GRAPHICS This kernel key is required for graphics device drivers.

KKEY_DMA This kernel key is required for DMA information (DMA handles and EEH
handles).

KKEY_TRB This kernel key is required for timer services (struct trb).

KKEY_IOMAP This kernel key is required for access to I/O-mapped segments.

KKEY_FILE_SYSTEM This kernel key is required to access vnodes and gnodes (vnop callers).

Note: Table 3-4 shows a preliminary list of kernel keys. As kernel keys are added to
components, additional kernel keys will be defined.

The current full list can be found in /usr/include/sys/skeys.h.

Note: Not all keys in the kernel key list are currently enforced. However, it is always safe to
include them in a keyset.
82 IBM AIX Continuous Availability Features

It is acceptable (though not required) to remove unwanted keys from copies of the sets
mentioned. For example, KKEY_TRB might be unnecessary because your code does not use
timer services. However, building a keyset from scratch by explicitly adding just the kernel
keys you need is not recommended. The kernel's use of keys is likely to evolve over time,
which could make your keyset insufficient in the future. Any new kernel keys defined that
kernel extensions might need will be added to the basic predefined keysets mentioned, thus
ensuring that you will hold these new keys automatically.

Hardware and operating system considerations
� AIX kernel - kernel key exploitation is provided with the AIX V6.1 release. There is no

retrofit enablement.

� AIX V6.1 will continue to function on supported legacy hardware that does not support
storage keys.

� Kernel keys are only available with the 64-bit kernel.

� Kernel keys are enabled by default on key-capable machines. This is the normal
operational mode.

� A reboot is required in order to enable or disable kernel keys.

Kernel key-to-hardware key mapping
The PowerPC architecture allows implementations to provide 2 to 32 hardware keys. The
initial POWER6 implementation provides support for 8 keys.

For all supported hardware configurations, the ability exists to force one kernel key to be
mapped exclusively to one hardware key. Kernel mappings can be expected to become more
fine-grained as the number of available hardware keys increases. These mappings will be
updated as new keys are defined.

The hardware key number (a small integer) is associated with a virtual page through the page
translation mechanism. The AMR special purpose register is part of the executing context;
see Figure 3-2. The 32-bit-pair keyset identifies the keys that the kernel has at any point of
execution. If a keyset does not have the key to access a page, it will result in a DSI/system
crash.
Chapter 3. AIX advanced continuous availability tools and features 83

Figure 3-2 PFT entry with AMR for a typical kernel process/execution path on P6 hardware

For P6 hardware, there are only eight available hardware keys, so each keyset will be
mapped to a 16-bit AMR. Each bit-pair in AMR may have more than one key mapped to it.
For example, if key 4 is set in AMR, that means at least one of KKEY_COMMO,
KKEY_NETM, KKEY_USB, and KKEY_GRAPHICS has been added to the hardware keyset.

Two base kernel domains are provided. Hardware key 6 is used for critical kernel functions.
Hardware key 7 for all other base kernel keys. Hardware key 5 is used for kernel extension
private data keys. Hardware keys 3 to 5 are used for kernel extension domains. Two keys are
dedicated for user mode kernel keys. KKEY_UPRIVATE1 is allocated by default for potential
user mode.

3.7.4 Degrees of storage key protection and porting considerations

A kernel extension might support storage protection keys to varying degrees, depending on
its unique requirements. These degrees are explored in the next section.

Key-unsafe kernel extension
A key-unsafe kernel extension does not contain any explicit support for storage protection
keys. Extensions in this class are older code written without regard to storage key protection,
needing largely unrestricted access to all memory.

It is the kernel's responsibility to ensure that legacy code continues to function as it did on
prior AIX releases and on hardware without storage key support, even though such code
might access kernel private data.

KKEY_LDR
KKEY_LFS
KKEY_J2
......
KKEY_LDATALOC
KKEY_KER

KKEY_UPUBLIC, KKEY_FILE_DATA

KKEY_UPRIVATE1

KKEY_BLOCK_DEV
KKEY_FILE_SYSTEM

KKEY_COMMO
KKEY_NETM
KKEY_USB
KKEY_GRAPHICS

KKEY_PUBLIC

KKEY_DMA
KKEY_TRB
KKEY_IOMAP
KKEY_PRIVATE1-32

keys for kernel internal
use, ex:
KKEY_VMM_PMAP

Mapping of
KEY_SET to
HKEY_SET
through ABI

0

1

2

3

4

5

6

7

W RKEY0

KEY1

KEY2

.

.

.

KEY30

KEY31

AMR

PFT

Page frames

64 bit KEY_SET

page #x

page #x + 2

page #x + 1

Note: Kernel extensions really should never
need keys for internal use (hkey 6)
84 IBM AIX Continuous Availability Features

To continue running in a key-protected environment, legacy kernel extensions receive special
support from the kernel. Any extension converted to use keys is still in an environment with a
mixture of key-aware and key-unsafe functions. A key-aware kernel extension might call a
service that is in a key-unsafe kernel extension.

When a key-unsafe function is called, the kernel must, in effect, transparently insert special
glue code into the call stack between the calling function and the key-unsafe called function.
This is done automatically, but it is worth understanding the mechanism because the inserted
glue code is visible in stack callback traces.

When legacy code is called, either directly by calling an exported function or indirectly by
using a function pointer, the kernel must:

1. Save the caller's current key access rights (held in the AMR).
2. Save the caller's link register (LR).
3. Replace the current AMR value with one granting broad data access rights.
4. Proceed to call the key-unsafe function, with the link register set, so that the called

function returns to the next step.
5. Restore the original caller's AMR and LR values.
6. Return to the original caller.

The AMR update must be performed transparently, thus the new AMR stack had to be
developed. The new resource is also called a context stack. The current context stack pointer
is maintained in the active kmstsave structure, which holds the machine state for the thread
or interrupt context. Use the mst kernel debugger command to display this information. The
context stack is automatically pinned for key-unsafe kernel processes. The setjmpx and
longjmpx kernel services maintain the AMR and the context stack pointer.

When a context stack frame needs to be logically inserted between standard stack frames,
the affected function (actually, the function's traceback table) is flagged with an indicator. The
debugger recognizes this and is able to provide you with a complete display for the stack
trace. The inserted routine is named hkey_legacy_gate. A similar mechanism is applied at
many of the exported entry points into the kernel, where you might observe the use of
kernel_add_gate and kernel_replace_gate.

This processing adds overhead when an exported key-unsafe function is called, but only
when the called function is external to the calling module. Exported functions are represented
by function descriptors that are modified by the loader to enable the AMR changing service to
front-end exported services. Intramodule calls do not rely on function descriptors for direct
calls, and thus are not affected.

All indirect function pointer calls in a key-aware kernel extension go through special
kernel-resident glue code that performs the automatic AMR manipulations as described. If
you call out this way to key-unsafe functions, the glue code recognizes the situation and takes
care of it for you. Hence, a key-aware kernel extension must be compiled with the
-q noinlglue option for glue code.

Key-safe kernel extension
A key-safe kernel extension manages its access to memory, respecting the boundaries of the
kernel and user domains. It does not directly reference either kernel private data structures or
user space addresses. It also does not attempt to protect its own private data (see
“Key-protected kernel extension” on page 86). To become key-safe, the extension must
explicitly select the existing memory domains which it intends to access. This protects the rest
of the system from errors in the key-safe module.
Chapter 3. AIX advanced continuous availability tools and features 85

To make a kernel extension key-safe, follow these steps:

1. Decide which exported kernel keyset, if any, should be the basis for your module's keyset.
2. Optionally, remove any unnecessary keys from your copy of this kernel keyset.
3. Convert the kernel keyset to a hardware keyset.
4. Place add or replace (protection) gates (see 3.7.5, “Protection gates” on page 87) at or

near all entry points (except driver initialization) as needed to gain the specific data access
rights required by each entry point. You will no longer have direct access to user space by
default, and you might need to address that issue at a later time.

5. Place your restore gates at or near exit points.
6. Link your extension with the new –b RAS flag to identify it to the system as RAS-aware.
7. Do not specify inline pointer glue (-q inlglue), as previously mentioned.

Note that if you are compiling with the v9 or later xlC compiler, you must specify
–q noinlglue because the default has changed.

Your initialization or configuration entry point cannot start off with a protection gate whose
underlying hardware keyset it must first compute. Only after setting up the necessary
hardware keysets can you implement your protection gates.

The computation of these keysets should be done only once (for example, when the first
instance of an adapter is created). These are global resources used by all instances of the
driver. Until you can use your new protection gates, you must be sure to reference only data
that is unprotected, such as your stack, bss, and data regions.

If this is particularly difficult for some reason, you can statically initialize your hardware keyset
to HKEYSET_GLOBAL. That initial value allows your protection gates to work even before
you have constructed your kernel and hardware keysets, although they would grant the code
following them global access to memory until after the hardware keysets have been properly
initialized. If your extension accepts and queues data for future asynchronous access, you
might also need to use HKEYSET_GLOBAL, but only if this data is allowed to be arbitrarily
key-protected by your callers. Use of the global keyset should be strictly minimized.

If you want to be certain that a hardware keyset is not used unexpectedly, statically initialize it
to HKEYSET_INVALID. A replace gate with this hardware keyset would revoke all access to
memory and cause a DSI almost immediately.

Your protection gates protect kernel data and the data of other modules from many of the
accidental overlays that might originate in your extension. It should not be necessary to
change any of the logic of your module to become key safe. But your module's own data
remains unprotected. The next step is to protect your kernel extension.

Key-protected kernel extension
A key-protected kernel extension goes beyond key safe; it identifies and protects its own
private data, as well as data in other domains, from accidental access. This protection can be

Note: Kernel keys and keysets, which are described later in this section, are defined here:

� A kernel key is a virtual key that is assigned by the kernel. Kernel programs can use
more virtual keys than exist in the hardware, because many kernel keys can share a
single hardware key.

The kernel data is classified into keys according to function. You can use kernel keys to
define a large number of virtual storage protection keys. Most kernel keys are used only
within the kernel. The sys/skeys.h file contains a list of all keys.

� A kernel keyset is a grouping of kernel keys based on usage scope (see “Kernel
keysets” on page 82). The sys/skeys.h file contains a list of all predefined keysets.
86 IBM AIX Continuous Availability Features

achieved by using a private kernel key, or by taking advantage of a shared key that you are
already using.

A kernel extension that is either key-safe or key-protected is called “key-aware”. To make a
kernel extension key-aware, you must understand the kernel’s use of keys. To make a kernel
extension key-protected, you must also define its private or semi-private data and how it uses
keys to protect that data. A semi-private key might be used to share data among several
related kernel extensions. A private key would be for the exclusive use of a single extension.

Making a kernel extension fully key-protected adds more steps to the port. You now must also
follow these steps:

1. Analyze your private data, and decide which of your structures can be key-protected.
You might decide that your internal data objects can be partitioned into multiple classes,
according to the internal subsystems that reference them, and use more than one private
key to achieve this.

2. Consider that data allocated for you by special services might require you to hold specific
keys.

3. Construct hardware keysets as necessary for your protection gates.
4. Consider using read-only access rights for extra protection. For example, you might switch

to read-only access for private data being made available to an untrusted function.
5. Allocate one or more private kernel keys to protect your private data.
6. Construct a heap (preferably, or use another method for allocating storage) protected by

each kernel key you allocate, and substitute this heap (or heaps) consistently in your
existing xmalloc and xmfree calls.
When substituting, pay particular attention that you replace use of kernel_heap with a
pageable heap, and the use of pinned_heap with a pinned one. Also be careful to always
free allocated storage back to the heap from which it was allocated. You can use malloc
and free as a shorthand for xmalloc and xmfree from the kernel_heap, so be sure to also
check for these.

7. Understand the key requirements of the services you call. Some services might only work
if you pass them public data.

You need to collect individual global variables into a single structure that can be xmalloced
with key protection. Only the pointer to the structure and the hardware keyset necessary to
access the structure need to remain public.

The private key or keys you allocate share hardware keys with other kernel keys, and
perhaps even with each other. This affects the granularity of protection that you can achieve,
but it does not affect how you design and write your code. So, write your code with only its
kernel keys in mind, and do not concern yourself with mapping kernel keys to hardware keys
for testing purposes. Using multiple keys requires additional protection gates, which might not
be justifiable in performance-sensitive areas.

3.7.5 Protection gates

The mechanism described in 3.7.4, “Degrees of storage key protection and porting
considerations” on page 84 that grants broad data access rights to a key-unsafe kernel
extension is a type of protection gate called an implicit protection gate.

If you make a kernel extension key-aware, you must add explicit protection gates, typically at
all entry and exit points of your module. The gates exist to ensure that your module has
access to the data it requires, and does not have access to data it does not require.

Without a gate at (or near) an entry point, code would run with whichever keys the caller
happened to hold. This is something that should not be left to chance. Part of making a kernel
Chapter 3. AIX advanced continuous availability tools and features 87

extension key-aware is determining the storage protection key requirements of its various
entry points and controlling them with explicit protection gates.

There are two kinds of gates to choose from at an entry point:

Add gate This kind of gate allows you to augment the caller’s keyset with your
own. Choose an add gate for a service where your caller passes
pointers to data that could be in an arbitrary key.

Because this data might be protected with a key that is not known to
you, it is important that you retain the caller’s keys to ensure you can
reference the data, while perhaps adding additional keys so that you
can also reference any private data that you need.

Replace gate With this kind of gate, you switch to your own defined set of keys.
Choose a replace gate at an entry point that stands on its own
(typically a callback that you have registered with the device switch
table, for example). Your parameters are implicit, and you need to pick
up the known keys that are necessary to reference this data.

The replace gate is also important in relinquishing the caller's keys;
typically the kernel is your caller in these situations, and retaining
access to kernel internal data would be inappropriate. The predefined
kernel keysets previously described should form the basis of the
typical replace gate.

In both cases, the protection gate service returns the original AMR
value, so you can restore it at your exit points.

If a directly called service is not passed any parameters pointing to data that might be in an
arbitrary key, a replace gate should be used in preference to an add gate, because it is a
stronger form of protection. Generally, calls within your module do not need gates, unless you
want to change protection domains within your module as part of a multiple keys component
design.

Protection gates might be placed anywhere in your program flow, but it is often simplest to
identify and place gates at all the externally visible entry points into your module. However,
there is one common exception: you can defer the gate briefly while taking advantage of your
caller's keys to copy potentially private data being passed into public storage, and then switch
to your own keyset with a replace gate.

This technique yields stronger storage protection than the simpler add gate at the entry point.
When using this approach, you must restore the caller's keys before public data can be
copied back through a parameter pointer. If you need both the caller's keys and your own
keys simultaneously, you must use an add gate.

To identify the entry points of your kernel extension, be sure to consider the following typical
entry points:

� Device switch table callbacks, such as:

– open
– close
– read
– write
– ioctl
– strategy
– select
– print
88 IBM AIX Continuous Availability Features

– dump
– mpx
– revoke

The config entry point for a device driver typically does not have a protection gate, but it
includes the initialization necessary for protection gates, heaps, and so on for subsequent
use by other entry points. The entry point configuring device instances would typically
have protection gates.

� Struct ndd callbacks used in network drivers, such as:

– ndd_open
– ndd_close
– ndd_output
– ndd_ctl
– nd_receive
– nd_status
– ndd_trace

� Trb (timer event) handler

� Watchdog handler

� Enhanced I/O error handling (EER) handlers

� Interrupt handler (INTCLASSx, iodone, and offlevel)

� Environmental and power warning (EPOW) handler

� Exported system calls

� Dynamic reconfiguration (DR) and high-availability (HA) handlers

� Shutdown notification handler

� RAS callback

� Dump callback (for example, as set up using dmp_add or dmp_ctl(DMPCTL_ADD,…))

� Streams callback functions

� Process state change notification (proch) handlers

� Function pointers passed outside of your module

You generally need protection gates only to set up access rights to non-parameter private
data that your function references. It is the responsibility of called programs to ensure the
ability to reference any of their own private data. When your caller's access rights are known
to be sufficient, protection gates are not needed.

Memory allocation
Issues related to heap changes and associated APIs are beyond the scope of this document.
For information about this topic, refer to the AIX Information Center for 6.1 at the following
site:

http://publib.boulder.ibm.com/infocenter/pseries/v6r1/index.jsp

Initial Authority Mask Register (AMR) value
When a key-safe kernel extension’s configuration entry point is called, only the
KKEY_PUBLIC kernel key is active. This is set by the sysconfig() system call when calling an
module config entry point or a registered dd_config entry point. It is the first call to a module’s
config entry point that initializes hardware keysets for the module’s other entry points.

A configuration entry point can execute an explicit protection gate after its keysets are
initialized. Future calls to other extension interfaces use protection gates (if the developer
Chapter 3. AIX advanced continuous availability tools and features 89

http://publib.boulder.ibm.com/infocenter/pseries/v6r1/index.jsp

added a protection gate for the interface) and the hardware keyset established by module
configuration. Future calls to a configuration entry point can execute an explicit protection
gate, but this requires logic in the module configuration point to differentiate the first and
subsequent calls.

When a new (key-safe) thread/k-proc is created, it starts execution at an initialization function
passed to kthread_start()/initp(). For key-safe extensions, the kernel calls this entry point with
a keyset that contains only the KKEY_PUBLIC kernel key. The k-thread/k-proc initialization
function is an entry point, so it is the callee’s responsibility to add a protection gate if another
keyset is required.

In these two cases, the kernel is required to load the legacy keyset before calling an
initialization function contained in a key-unsafe extension.

Multiple page sizes
Significant work has been done to exploit medium (64 K) and large (16 M) pages in the
kernel. Medium pages continue to be usable with kernel keys. Kernel heaps can continue to
be backed by medium-size pages when kernel keys are enabled. There will be a heap per
hardware key, and that will increase the kernel’s working set. Code setting storage keys on all
kernel memory must be aware of the page size.

3.7.6 Example using kernel keys

This example tries to load a kernel extension that has the ability to use kernel protection keys.
It will provide a system call kkey_test() that will be called by user program myprog.c (shown in
Example 3-24 on page 93). The make file for this program is shown in Example 3-21.

When system call kkey_test() is called with parameter=0, it tries to access private heap with
KKEY_VMM in its protection gate (as shown in Example 3-28 on page 96).

When system call kkey_test() is called with parameter>0, it tries to access private heap
without KKEY_VMM in its protection gate (as shown in Example 3-29 on page 96).

Example 3-21 Make file for kernel key example

CC=/usr/vac/bin/cc
LD=/usr/bin/ld
LIB= -bI:kkey_set.exp
UTIL=.

all: myprog service kkey_set64

kkey_set64: kkey_set.c kkey_set.exp
$(CC) -q64 -D_KERNEL -D_KERNSYS -D_64BIT_KERNEL -D__64BIT__ -o kkey_set64.o -c

kkey_set.c
$(LD) -b64 -o kkey_set64 kkey_set64.o -e kkey_test_init -bE:kkey_set.exp

-bI:/usr/lib/kernex.exp -lcsys

service: service.c
$(CC) -o service service.c

Note: The kernel must be built using bosboot -aD to include the kernel debugger. Without
this, you will not see the kernel printfs, and the dsi will not pop you into kdb, but will just
take a dump.
90 IBM AIX Continuous Availability Features

myprog: myprog.c
$(CC) -q64 -o myprog myprog.c $(LIB)

clean:
rm -f *.o myprog service kkey_set64

The kernel extension will create a private heap protected by key KKEY_VMM. Then kernel
extension will try to access it with and without KKEY_VMM in its keyset.

When trying access without KKEY_VMM, it should cause a DSI with exception
EXCEPT_SKEY; see Example 3-22.

Example 3-22 Kernel extension code, system call is kkey_test(): kkey_set.c

#include <sys/types.h>
#include <sys/err_rec.h>
#include <sys/malloc.h>
#include <sys/libcsys.h>
#include <sys/kerrno.h>
#include <sys/skeys.h>
#include <sys/vmuser.h>

kkey_test_init(int cmd, struct uio * uio)
{

printf("Kernel Extension kkey_set loaded successfully\n");
return 0;

}

int kkey_test(int mode)
{

kerrno_t rc;
kkey_t kkey=KKEY_VMM;
heapattr_t heapattr;
heapaddr_t my_heap=HPA_INVALID_HEAP;

kkeyset_t myset=KKEYSET_INVALID;
hkeyset_t hwset, hwset1, oldhwset, oldhwset1;
printf("\n");
if ((rc=kkeyset_create(&myset))!=0){

printf("kkeyset_create() failed\n");
return -1;

}
hwset1=hkeyset_get();
printf("Current hardware keyset =%016lx\n",hwset1);
/*
 * Add keyset KKEYSET_KERNEXT to our keyset.
 * Remember KKEYSET_KERNEXT= {KKEY_PUBLIC, KKEY_BLOCK_DEV, KKEY_COMMO,
 * KKEY_USB, KKEY_GRPAPHICS, KKEY_FILESYSTEM, KKEY_DMA, KKEY_TRB, KKEY_MBUF,
 * KKEY_IOMAP}
 */
if ((rc=kkeyset_add_set(myset, KKEYSET_KERNEXT))!=0){

printf("kkseyset_add_set() failed\n");
return -1;

}

if ((rc=kkeyset_to_hkeyset(myset, &hwset))!=0){
printf("kkeyset_to_hkeyset() failed: rc=%lx\n",rc);
return -1;
Chapter 3. AIX advanced continuous availability tools and features 91

}
printf("hardware keyset after KERNEXT =%016lx\n",hwset);
/*
 * Add kkey=KKEY_VMM to the current keyset. This is the key we will be
 * using to protect our memory pages
 */
if ((rc=kkeyset_add_key(myset, kkey ,KA_RW))!=0){

printf("kkeyset_add_key() failed\n");
return -1;

}

if ((rc=kkeyset_to_hkeyset(myset, &hwset))!=0){
printf("kkeyset_tohkeyset() failed: rc=%lx\n",rc);
return -1;

}
printf("hardware keyset after KKEY_VMM=%016lx\n",hwset);
/*
 * Create a heap protected by the key KKEY_VMM
 */
bzero(&heapattr, sizeof(heapattr));
heapattr.hpa_eyec=EYEC_HEAPATTR;
heapattr.hpa_version=HPA_VERSION;
heapattr.hpa_flags=HPA_PINNED|HPA_SHARED;
heapattr.hpa_debug_level=HPA_DEFAULT_DEBUG;
/*
 * The heap will be protected by key==heapattr.hpa_kkey=KKEY_VMM
 * So other extensions/components should have KKEY_VMM in their keyset in
 * order to access it.
 */
heapattr.hpa_kkey=kkey;
if ((rc=heap_create(&heapattr, &my_heap))!=0){

printf("heap_create() failed\n");
return -1;

}
/*
 * Add current keyset={KKEYSET_KERNEXT, KKEY_VMM} to the current kernel
 * extension/system-call. This will be done through the help of a Protection
 * Gate. If you dont do this you will not be able to access the private heap
 * created in line#75 as thats protected by key KKEY_VMM
 */
oldhwset=hkeyset_replace(hwset);
/*
 * Assign a page from our private kernel heap which is protected by
 * keyset={KKEYSET_KERNEXT, KKEY_VMM}.
 */
caddr_t page=xmalloc(4096, 12, my_heap);
if (page==NULL){

printf("xmalloc() failed");
return -1;

}
/* Test KA_READ access on heap. Since we have the key in our keyset (from
 * line#52) so we will be able to access it. In case we haven't it would have
 * caused a DSI or machine crash.
 */
92 IBM AIX Continuous Availability Features

*(page+10)=10;
if (mode>0){
/*
 * Remove KKEY_VMM from current keyset. After this operation current keysey=
 * {KKEYSET_KERNEXT}
 */

if ((rc=kkeyset_remove_key(myset, KKEY_VMM, KA_RW))!=0){
printf("kkeyset_remove_key() failed\n");
return -1;

}
if ((rc=kkeyset_to_hkeyset(myset, &hwset))!=0){

printf("kkeyset_to_hkeyset() failed: rc=%lx\n",rc);
return -1;

}
/*
 * Set current keyset= {KKEYSET_KERNEXT} using the Protection Gate to current
 * kernel code path
 */

oldhwset1=hkeyset_replace(hwset);
printf("hardware keyset w/o KKEY_VMM =%lx\n",hwset);

/*
 * Try accessing the private heap using the current keyset={KKEYSET_KERNEXT}.
 * As the heap is protected by {KKEY_VMM} so this should
 * result in a DSI or system crash (as there is no default exception handler
 * defined for storage key exception- EXCEPT_SKEY
 */

*(page+10)=10;
printf("never reaches here\n");

}
/*
 * Restore the hardware keyset to the value before module entry
 */
hkeyset_restore(hwset1);
/*
 * Free the space occupied by data structures for kernel keyset
 */
xmfree(page, my_heap);
heap_destroy (my_heap,0);
kkeyset_delete(myset);
return 0;

}

The export file for kernel extension is shown in Example 3-23.

Example 3-23 Export file for kernel extension:kkey_set.exp

#!/unix
kkey_test syscall64

Sample code myprog.c is shown in Example 3-24.

Example 3-24 User program for accessing kernel extension: myprog.c

main(int argc, char** argv)
{

int param=0;
Chapter 3. AIX advanced continuous availability tools and features 93

param=atoi(*(argv+1));
printf("Testing Kernel Storage key\n");
/*
 * If argument passed is > 0 then Kernel extension
 * will perform accessing a page for which it doesnt
 * have a key. This will result in a DSI and hence
 * machine will crash.
 * Else kernel extension will access the page with
 * required storage key and everything will go fine.
 */
return (kkey_test(param));

}

Sample code for a tool used for loading and unloading the kernel extension is shown in
Example 3-25.

Example 3-25 Tool for loading and unloading kernel extension: service.c

#include <sys/types.h>
#include <sys/sysconfig.h>
#include <errno.h>

#define BINSIZE 256
#define LIBSIZE 256

#define ADD_LIBPATH() \
strcpy(g_binpath,*(argv+2)); \
g_cfg_load.path=g_binpath; \
if (argc<4) \

g_cfg_load.libpath=NULL; \
else{ \

strcpy(g_libpath,*(argv+3)); \
g_cfg_load.libpath=g_libpath;\

} \
g_cfg_load.kmid = 0;

struct cfg_load g_cfg_load;
char g_binpath[BINSIZE];
char g_libpath[LIBSIZE];

main(int argc, char** argv)
{

if (argc<3){
printf("Usage: service --load|--unload Kernel_Entension [Libpath]\n");
return 1;

}

if (!(strcmp("--load",*(argv+1)))){
ADD_LIBPATH();

/*
 * Load the kernel extension
 */

if (sysconfig(SYS_SINGLELOAD, &g_cfg_load, sizeof(struct cfg_load))==\\
 CONF_SUCC){

printf("[%s] loaded successfully kernel \\
 mid=[%d]\n",g_binpath,g_cfg_load.kmid);
94 IBM AIX Continuous Availability Features

return 0;
}else{

printf("[%s] not loaded with ERROR=%d\n",g_binpath,errno);
return 1;

}
}
if (!(strcmp("--unload",*(argv+1)))){

ADD_LIBPATH();
if (sysconfig(SYS_QUERYLOAD, &g_cfg_load, sizeof(struct \\

 cfg_load))||g_cfg_load.kmid){
printf("[%s] found with mid=[%d]\n",g_binpath,g_cfg_load.kmid);

/*
 * Unloaded the loaded kernel extension
 */

if (sysconfig(SYS_KULOAD, &g_cfg_load, sizeof(struct cfg_load))== 0){
printf("[%s] unloaded successfully\n",g_binpath);
return 0;

}else{
printf("[%s] not unloaded with error=[%d]\n",g_binpath,errno);
return 1;

}
}else{

printf("[%s] currently not loaded, nothing to unload\n",g_binpath);
return 1;

}
}
/*
 * Invalid second Argument
 */
printf("Usage: service --load|--unload Kernel_Entension [Libpath]\n");
return 1;

}

Try to load the kernel extension and call it first with a protection gate, and then without an
appropriate protection gate (that is, without KKEY_VMM) by using KKEY_VMM.

To view the output of the kernel extension (system call), you need console access. All output
will go to the hardware console when you use printf() in kernel mode. Compile the program
using the command shown in Example 3-26.

Example 3-26 Compile the program

make
 /usr/vac/bin/cc -q64 -o myprog myprog.c -bI:kkey_set.exp
 /usr/vac/bin/cc -o service service.c
 /usr/vac/bin/cc -q64 -D_KERNEL -D_KERNSYS -D_64BIT_KERNEL -D__64BIT__ -o
kkey_set64.o -c kkey_set.c
"kkey_set.c": 1506-312 (W) Compiler internal name __64BIT__ has been defined as a
macro.
 ld -b64 -o kkey_set64 kkey_set64.o -e kkey_test_init -bE:kkey_set.exp
-bI:/usr/lib/kernex.exp -lcsys
Target "all" is up to date.

Note: The second iteration will cause the kernel to crash.
Chapter 3. AIX advanced continuous availability tools and features 95

Load the kernel extension so that a system call can use it form user mode, as shown in
Example 3-27.

Example 3-27 Loading kernel extension using tool “service”

./service --load kkey_set64
Preserving 2378 bytes of symbol table [kkey_set64]
[kkey_set64] loaded successfully kernel mid=[546676736]

Run myprog without any argument, which means it will run the kernel extension (syscall) with
the appropriate protection gate {{KKEYSET_KERNEXT}+KKEY_VMM}. Because the private
heap of the kernel extension has been protected by KKEY_VMM, you can access it and the
system call will return without any DSI/crash.

Execute the user-level program that will call the kernel system call with protection gate
enabled with KKEY_VMM, as shown in Example 3-28.

Example 3-28 First iteration with KKEY_VMM

#./myprog
Testing Kernel Storage key

Current hardware keyset =0008000000000000
hardware keyset after KERNEXT =F00F000000000000
hardware keyset after KKEY_VMM=F00C000000000000

Now execute the user-level program that will call the kernel system call with a protection gate
without KKEY_VMM key in its keyset (see Example 3-29 on page 96). This will cause the
kernel to crash. Running myprog with argument>2 will do that.

Because the private heap of the kernel extension has not been protected by KKEY_VMM, a
DSI will result and the kernel will crash. Keep in mind that exception type EXCEPT_SKEY
cannot be caught with setjmpx(), so the kernel programmer cannot catch EXCEPT_SKEY
using setjmpx().

Example 3-29 Second iteration without KKEY_VMM

./myprog 1

Current hardware keyset =0008000000000000
hardware keyset after KERNEXT =F00F000000000000
hardware keyset after KKEY_VMM=F00C000000000000
hardware keyset w/o KKEY_VMM =F00F000000000000
Data Storage Interrupt - PROC
.kkey_test+0002C8 stb r3,A(r4)
r3=000000000000000A,A(r4)=F10006C00134A00A
KDB(6)>

When you are debugging in kernel mode (see Example 3-30), you can see the value of the
AMR (current hardware key or protection gate), the current process which caused the
exception, and the exception type. Refer to 3.7.8, “Kernel debugger commands” on page 108

Note: There are kernel services provided for catching storage-key exceptions. However,
their use is not recommended and they are provided only for testing purposes.
96 IBM AIX Continuous Availability Features

for more information about KDB commands relevant for debugging storage-key exceptions
and related issues.

Example 3-30 KDB debugging

KDB(6)> f
pvthread+80B100 STACK:
[F1000000908E34C8]kkey_test+0002C8 (0000000100000001)
[00014D70].hkey_legacy_gate+00004C ()
[00003820]ovlya_addr_sc_flih_main+000100 ()
[kdb_get_virtual_doubleword] no real storage @ FFFFFFFF3FFFE60

KDB(6)> dr amr
amr : F00F000000000000
 hkey 2 RW PUBLIC
 hkey 3 RW BLOCK_DEV LVM RAMDISK FILE_SYSTEM NFS CACHEFS AUTOFS KRB5 ...
 hkey 4 RW COMMO NETM IPSEC USB GRAPHICS
 hkey 5 RW DMA PCI VDEV TRB IOMAP PRIVATE1 PRIVATE17 PRIVATE9 PRIVATE25 ...

KDB(6)> dk 1 @r4
Protection for sid 4000006000000, pno 00C00134, raddr 81C7A000
 Hardware Storage Key... 7
 Page Protect key....... 0
 No-Execute............. 0

KDB(6)> p
 SLOT NAME STATE PID PPID ADSPACE CL #THS

pvproc+100AC00 16427*myprog ACTIVE 002B186 00301C8 00000000A9857590 0 0001

NAME....... myprog
STATE...... stat :07 xstat :0000
FLAGS...... flag :00200001 LOAD EXECED
........... flag2 :00000001 64BIT
........... flag3 :00000000
........... atomic :00000000
........... secflag:0001 ROOT
LINKS...... child :0000000000000000
........... siblings :0000000000000000
........... uidinfo :000000000256BA78
........... ganchor :F10008070100AC00 <pvproc+100AC00>
THREAD..... threadlist :F10008071080B100 <pvthread+80B100>
DISPATCH... synch :FFFFFFFFFFFFFFFF
AACCT...... projid :00000000 sprojid :00000000
........... subproj :0000000000000000
........... file id :0000000000000000 0000000000000000 00000000
........... kcid :00000000
........... flags :0000
(6)> more (^C to quit) ?

KDB(6)> mst
Machine State Save Area
iar : F1000000908E34C8 msr : 8000000000009032 cr : 80243422
lr : F1000000908E34BC ctr : 00000000007CD2A0 xer : 20000001
mq : FFFFFFFF asr : FFFFFFFFFFFFFFFF amr : F00F000000000000
r0 : F1000000908E34BC r1 : F00000002FF47480 r2 : F1000000908E4228
Chapter 3. AIX advanced continuous availability tools and features 97

r3 : 000000000000000A r4 : F10006C00134A000 r5 : F00000002FF47600
r6 : 8000000000009032 r7 : 8000000000009032 r8 : 0000000000000000
r9 : 00000000020BB1C0 r10 : F00F000000000000 r11 : F00000002FF47600
r12 : F00000002FFCCFE0 r13 : F100060801392400 r14 : 0000000000000002
r15 : 0FFFFFFFFFFFF418 r16 : 0FFFFFFFFFFFF430 r17 : 0800200140000000
r18 : 0FFFFFFFFFFFFED0 r19 : 09FFFFFFF000B940 r20 : 0000000110922550
r21 : 0000000000000000 r22 : 0000000000002AF3 r23 : 0000000110008158
r24 : 0000000110008158 r25 : 0000000000000000 r26 : 0000000110009778
r27 : 0000000110009768 r28 : FFFFFFFFFFFFFFFF r29 : 0000000110009758
r30 : F1000000908E3788 r31 : F1000000908E4000

prev 0000000000000000 stackfix 0000000000000000 int_ticks 0000
cfar 0000000000014E74
kjmpbuf 0000000000000000 excbranch 0000000000000000 no_pfault 00
intpri 0B backt 00 flags 00
hw_fru_id 00000001 hw_cpu_id 00000003
(6)> more (^C to quit) ?
fpscr 0000000000000000 fpscrx 00000000 fpowner 01
fpeu 01 fpinfo 00 alloc F000
o_iar F1000000908E34C8 o_toc F1000000908E4228
o_arg1 000000000000000A o_vaddr F10006C00134A00A
krlockp 0000000000000000 rmgrwa F100041580132E20
amrstackhigh F00000002FFCCFF0 amrstacklow F00000002FFCC000
amrstackcur F00000002FFCCFE0 amrstackfix 0000000000000000
kstackhigh 0000000000000000 kstacksize 00000000
frrstart 700DFEED00000000 frrend 700DFEED00000000
frrcur 700DFEED00000000 frrstatic 0000 kjmpfrroff 0000
frrovcnt 0000 frrbarrcnt 0000 frrmask 00 callrmgr 00
Except :
excp_type 0000010E EXCEPT_SKEY
 orgea F10006C00134A00A dsisr 0000000002200000 bit set: DSISR_ST DSISR_SKEY
 vmh 0000000006C00510 curea F10006C00134A00A pftyp 4000000000000106
KDB(6)> vmlog
Most recent VMM errorlog entry
Error id = DSI_PROC
Exception DSISR/ISISR = 0000000002200000
Exception srval = 0000000006C00510
Exception virt addr = F10006C00134A00A
Exception value = 0000010E EXCEPT_SKEY
KDB(0)>

Kernel key API
The following basic types represent kernel keys, kernel keysets, and hardware keysets. They
are declared in <sys/skeys.h>.

kkey_t (uint)
This holds the value of a single kernel key. This does not contain
information about read/write access.

kkeyset_t (struct kkeyset *)
This identifies a kernel key group with read/write access flags for each
key in the set. This data structure is pageable, so it can only be
referenced in the process environment.

hkeyset_t (unsigned long long)
This is derived from a kernel keyset. It contains the hardware keyset
98 IBM AIX Continuous Availability Features

that allows access to the kernel keyset it was derived from. It is
implemented as a raw AMR value.

The following APIs are available for managing kernel and hardware keysets:

kerrno_t kkeyset_create(kkeyset_t *set)
This creates a kernel keyset.

kerrno_t kkeyset_delete(kkeyset_t set)
This deletes a kernel keyset.

kerrno_t kkeyset_add_key(kkeyset_t set, kkey_t key, unsigned long flags)
This adds a kernel key to a kernel keyset.

kerrno_t kkeyset_add_set(kkeyset_t set, kkeyset_t addset)
This adds a kernel keyset to an existing kernel keyset.

kerrno_t kkeyset_remove_key(kkeyset_t set, kkey_t key, unsigned long flags)
This removes a kernel key- from an existing kernel keyset.

kerrno_t kkeyset_remove_keyset(kkeyset_t set, kkeyset_t removeset)
This removes members of one kernel keyset from an existing kernel
keyset.

kerrno_t kkeyset_to_hkeyset(kkeyset_t kkeyset, hkeyset_t *hkey)
This computes the hardware key (AMR value) that provides memory
access specified by the inputted kernel keyset.

hkeyset_t hkeyset_add(hkeyset_t keyset)
This updates the protection domain by adding the hardware-keyset
specified by keyset to the currently addressable hardware-keyset. The
previous hardware-keyset is returned.

hkeyset_t hkeyset_replace(hkeyset_t keyset)
This updates the protection domain by loading the set specified by
keyset as the currently addressable storage set. The previous
hardware-keyset is returned.

void hkeyset_restore(hkeyset_t keyset)
This updates the protection domain by loading the set specified by
keyset as the currently addressable storage set. No return value is
provided by this function. Because this service is slightly more efficient
than hkeyset_replace(), it can be used to load a hardware-keyset
when the previous keyset does not need to be restored.

hkeyset_t hkeyset_get()
This reads the current hardware-key-set without altering it.

Hardware keysets can also be statically assigned several predefined values. This is often
useful to deal with use of a hardware keyset before a component can initialize it.

HKEYSET_INVALID
This keyset is invalid. When used, it will cause a storage-key
exception on the next data reference.

HKEYSET_GLOBAL
This keyset allows access to all kernel keys. It is implemented as an
all zeroes AMR value.
Chapter 3. AIX advanced continuous availability tools and features 99

3.7.7 User mode protection keys

User keys are intended for providing heuristic data protection in order to detect and prevent
accidental overlays of memory in an application. User key support is primarily being provided
as a RAS feature which could be used, for example, for DB2. Their primary use is to protect
the DB2 core from errors in UDFs (user-defined functions). Their secondary use is as a
debugging tool to prevent and diagnose internal memory overlay errors.

To understand how a user key is useful, take a brief look at DB2. DB2 provides a UDF facility
where customers can add extra code to the database. There are two modes UDFs can run in:
fenced and unfenced, as explained here:

� Fenced mode

UDFs are isolated from the database by execution under a separate process. Shared
memory is used to communicate between the database and UDF process. Fenced mode
has a significant performance penalty because a context switch is required to execute the
UDF.

� Unfenced mode

The UDF is loaded directly into the DB2 address space. Unfenced mode greatly improves
performance, but introduces a significant RAS exposure.

Although DB2 recommends using fenced mode, many customers use unfenced mode for
performance reasons. It is expected that only “private” user data can be protected with user
keys. There are still exposures in system data, such as library data that is likely to remain
unprotected.

Hardware keys are separated into a user mode pool and a kernel mode pool for several
reasons. First, an important feature of kernel keys is to prevent accidental kernel references
to user data. If the same hardware key is used for both kernel and user data, then kernel
components that run with that hardware key can store to user space. This is avoided.

Separating the hardware keys simplifies user memory access services such as copyin().
Because the hardware keys are separated, the settings for kernel mode access and user
mode access can be contained in a single AMR. This avoids a costly requirement to alter the
AMR between source and destination buffer accesses.

When user keys are disabled, sysconf(_SC_AIX_UKEYS) returns zero (0), indicating that the
feature is not available. Applications that discover the feature is not available should not call
other user key-related services. These services fail if called when user keys are disabled.

Support for user keys is provided for both 32-bit and 64-bit APIs. In 32-bit mode, compiler
support for long long is required to use user keys. User key APIs will be provided in an AIX
V5.3 update, as well as in AIX V6.1.

Applications that use these APIs have an operating system load time requisite. To avoid this
requisite, it is recommended that the application conditionally load a wrapper module that
makes reference to the new APIs. The wrapper module is only loaded when it is determined
that user keys are available; that is, when the configured number of user keys is greater than
zero.

Types of user keys
AIX will provide a default number of user keys. A sysconf (_SC_AIX_UKEYS) call can be
used by applications to query the number of user keys. For POWER6, two user keys are
available.
100 IBM AIX Continuous Availability Features

This is accomplished by exclusively dedicating hardware keys for use by applications. The
primary user key UKEY_PUBLIC is the default storage-key for user data. Access to this key
cannot be disabled in user-mode.

The UKEY values are an abstraction of storage keys. These key values are the same across
all applications. For example, if one process sets a shared page to UKEY_PRIVATE1, all
processes need UKEY_PRIVATE1 authority to access that page.

The sysconf() service can be used to determine if user keys are available without load time
dependencies. Applications must use ukey_enable() to enable user keys before user key
APIs can be used. All user memory pages are initialized to be in UKEY_PUBLIC. Applications
have the option to alter the user key for specific data pages that should not be publicly
accessible. User keys may not be altered on mapped files. The application must have write
authority to shared memory to alter the user key.

Other considerations for user keys application programming
Like kernel key support, user key support is intended as a Reliability and Serviceability
feature. It is not intended to provide a security function. A system call permits applications to
modify the AMR to allow and disallow access to user data regions, with no authority checking.

The kernel manages its own AMR when user keys are in use. When the kernel performs
loads or stores on behalf of an application, it respects the user mode AMR that was active
when the request was initiated. The user key values are shared among threads in a
multithreaded process, but a user mode AMR is maintained per thread. Kernel context
switches preserve the AMR. Threaded applications are prevented from running M:N mode
with user keys enabled by the ukey_enable() system call and pthread_create().

The user mode AMR is inherited by fork(), and it is reset to its default by exec(). The default
user mode value enables only UKEY_PUBLIC (read and write access). A system call,
ukeyset_activate() is available to modify the user mode AMR. Applications cannot disable
access to UKEY_PUBLIC. Preventing this key from being disabled allows memory that is
“unknown” to an application to always be accessible. For example, the TOC or data used by
an external key-unsafe library is normally set to UKEY_PUBLIC.

The ucontext_t structure is extended to allow the virtualized user mode AMR to be saved and
restored. The sigcontext structure is not changed. The jmp_buf structure is not extended to
contain an AMR, so callers of setjmp(), _setjmp(), and sig_setjmp() must perform explicit
AMR management. A ukey_setjmp() API is provided that is a front-end to setjmp() and
manages the user mode AMR.

The user mode AMR is reset to contain only UKEY_PUBLIC when signals are delivered and
the interrupted AMR is saved in the ucontext_t structure. Signal handlers that access storage
that is not mapped UKEY_PUBLIC are responsible for establishing their user mode AMR.

Hardware and operating system considerations
� AIX APIs for application user keys will be made available in AIX 5.3 TL6 running on

POWER6 hardware. AIX V5.3 does not support kernel keys.

� In AIX V5.3 TL6, application interfaces that exploit user keys only function with the 64-bit
kernel. When the 32-bit kernel is running, these user keys APIs fail.

� User keys are considered an optional platform feature. APIs are present to query if user
keys are supported at runtime, and how many user keys are available.

� User keys are available in 32-bit and 64-bit user-mode APIs.

� User keys can be used by threaded applications in 1:1 mode. They are not supported in
M:N mode.
Chapter 3. AIX advanced continuous availability tools and features 101

� The APIs provided by the system are low level. They allow management of the AMR and
page protection. Address space management is left to applications.

� When storage keys are available on a platform, a P6 system will default to two user keys
available to applications. It is possible to reconfigure the number of user keys, but that
requires an operating system reboot. Changing the default number of user keys is not
expected to be a customer action. This is only done in a lab environment, or as an SFDC
action by IBM service.

Example of user keys for two processes using a shared memory object
To demonstrate how user keys can be used, we developed a short C program. This program
creates two processes sharing a memory page, and that page will have a private key
assigned to it.

The parent process will have UKEY_PRIVATE1=UK_RW access. The child process will have
UKEY_PRIVATE1 with UK_READ, UK_WRITE and UK_RW access for each iteration of the
program. We will see how the child process behaves when it is given access to a shared
page with each authority. We also need to ensure that shared memory is allocated as a
multiple of pagesize, because that is the granularity level for protection keys.

Table 3-5 lists the sequence of operations for child and parent processes with respect to time.

Table 3-5 Execution flow

Note: User keys are provided as a RAS feature. They are only intended to prevent
accidental accesses to memory and are not intended to provide data security.

Time (sec) Parent Child

0 Define shared segment with size=1
page;
Define access
UKEY_PRIVATE1=UK_RW;
Protect with pkey=UKEY_PRIVATE1
sleep(2);

Sleeping

1 Sleeping Attach to the shared segment created by
Parent;
Define access
UKEY_PRIVATE2=UK_READ or
UK_WRITE or UK_RW;
Protect with ckey=UKEY_PRIVATE2
READ1();
WRITE1("abcd");
sleep(2);

2 Sleeping Sleeping

3 READ1();
WRITE1("ABCD");
sleep(2);

Sleeping

4 Sleeping READ1();
WRITE1("ABCD");
sleep(2);

5 Sleeping Sleeping

6 Detach and remove shared page;
return (0);

Sleeping
102 IBM AIX Continuous Availability Features

Example 3-31 Programming example of user keys

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/syspest.h>
#include <sys/signal.h>
#include <sys/vminfo.h>
#include <sys/ukeys.h>
key_t key;
int id;
int one_page;
char* data;
int pid;
int rc;
main(int argc, char** argv)
{

ukey_t pkey=UKEY_PRIVATE1;
ukey_t ckey=UKEY_PRIVATE1;
ukeyset_t pkeyset;
ukeyset_t ckeyset;
ukeyset_t oldset;
int nkeys;
if ((nkeys=ukey_enable())==-1){

perror("main():ukey_enable(): USERKEY not enabled");
exit(1);

}
assert(nkeys>=2);
if (rc=ukeyset_init(&pkeyset,0)){

perror("main():ukeyset_init(pkeyset)");
exit(1);

}
if (rc=ukeyset_init(&ckeyset,0)){

perror("main():ukeyset_init(ckeyset)");
exit(1);

}
if (rc=ukeyset_add_key(&pkeyset, pkey, UK_RW)){

perror("main():ukeyset_add_key(pkeyset, pkey,UK_RW)");
exit(1);

}

if (!strcmp(*(argv+1),"write")){
if (rc=ukeyset_add_key(&ckeyset, ckey, UK_WRITE)){

perror("main():ukeyset_add_key(ckeyset, ckey,UK_WRITE)");
exit(1);

}
}else{

7 Sleeping Detach shared page;
return(0)

Time (sec) Parent Child
Chapter 3. AIX advanced continuous availability tools and features 103

if (!strcmp(*(argv+1),"read")){
if (rc=ukeyset_add_key(&ckeyset, ckey, UK_READ)){

perror("main():ukeyset_add_key(ckeyset, ckey,UK_READ)");
exit(1);

}
}else{

if (rc=ukeyset_add_key(&ckeyset, ckey, UK_RW)){
perror("main():ukeyset_add_key(ckeyset, ckey,UK_RW)");
exit(1);

}
}

}
key=ftok("./ukey1.c",5);
pid=fork();
switch(pid){
case (0):/* CHILD */

sleep (1);
if ((id=shmget(key, 0, 0))==-1){

perror("child :shmget()");
return (1);

}
if ((data=shmat(id,(void *)0, 0)) == (char*) (-1)){

perror("child :shmat()");
return (1);

}
printf("child:data=0x%x\n",data);
if (rc=ukey_protect(data,one_page,ckey)){

perror("child :ukey_protect(ckey)");
exit(1);

}
oldset=ukeyset_activate(ckeyset,UKA_ADD_KEYS);
if (oldset==UKSET_INVALID){

printf("child :ukeyset_activate() failed");
exit (1);

}
printf("child :READ1 =[%s]\n",data);
strcpy(data+strlen(data),"abcd");
printf("child :WRITE1=[abcd]\n");
sleep(2);
printf("child :READ2 =[%s]\n",data);
strcpy(data+strlen(data),"efgh");
printf("child :WRITE2=[efgh]\n");
sleep(2);
if (shmdt(data)==-1){

perror("child :shmdt()");
return (1);

}
return (0);

case (-1):/* ERROR */
perror("fork()");
return (1);

default:/* PARENT */
one_page=4096;
printf("parent:pagesize=%d\n", one_page);
if ((id=shmget(key, one_page, IPC_CREAT|0644))==-1){
104 IBM AIX Continuous Availability Features

perror("parent:shmget()");
return (1);

}
if ((data=shmat(id,(void *)0, 0)) == (char*) (-1)){

perror("parent:shmat()");
return (1);

}
if (rc=ukey_protect(data,one_page,pkey)){

perror("parent:ukey_protect(pkey)");
exit(1);

}
oldset=ukeyset_activate(pkeyset,UKA_ADD_KEYS);
if (oldset==UKSET_INVALID){

printf("parent:ukeyset_activate() failed");
exit (1);

}
sleep(2);
printf("parent:READ1 =[%s]\n",data);
strcpy(data+strlen(data),"ABCD");
printf("parent:WRITE1=[ABCD]\n");
sleep(2);
if (shmdt(data)==-1){

perror("parent:shmdt()");
return (1);

}
if (shmctl(id,IPC_RMID,0)){

perror("parent:shmctl()");
return (1);

}
return (0);

}
}

We compiled the program:

cc -g -o ukey1 ukey1.c

We gave the child process write (no-read) access on the shared memory segment, and
executed it as shown in Example 3-32.

Example 3-32 Executing program with write access to shared memory

./ukey1 write
parent:pagesize=4096
child:data=0x30000000
parent:READ1 =[]
parent:WRITE1=[ABCD]
ls core
core
dbx ukey1 core
Type 'help' for help.
[using memory image in core]
reading symbolic information ...
Segmentation fault in strlen at 0xd010da00
0xd010da00 (strlen) 89030000 lbz r8,0x0(r3)
(dbx) where
Chapter 3. AIX advanced continuous availability tools and features 105

strlen() at 0xd010da00
_doprnt(??, ??, ??) at 0xd0126350
printf(0x200003f4, 0x30000000, 0xffffffff, 0x2ff47600, 0x0, 0x0, 0x0, 0x0) at
0xd011eabc
main(argc = 2, argv = 0x2ff22554), line 126 in "ukey1.c"
(dbx)q
#

Notice that a segmentation fault occurred at strlen(), which was trying to read shared memory
and calculate its size. Because read permission was not provided, it caused SIGSEGV.

Next, we gave the child process read (no-write) access to the shared memory segment and
executed the code as shown in Example 3-33.

Example 3-33 Program with read access to shared segment

./ukey1 read
parent:pagesize=4096
child:data=0x30000000
child :READ1 =[]
parent:READ1 =[]
parent:WRITE1=[ABCD]
ls core
core
dbx ukey1 core
Type 'help' for help.
[using memory image in core]
reading symbolic information ...

Segmentation fault in noname.strcpy [ukey1] at 0x10001004
0x10001004 (strcpy+0x4) 99030000 stb r8,0x0(r3)
(dbx) where
noname.strcpy() at 0x10001004
main(argc = 2, argv = 0x2ff2255c), line 127 in "ukey1.c"
(dbx)q
#

Notice that a segmentation fault occurred at the strcpy() function, which was trying to write to
shared memory. The strlen() function did not fail this time, because we gave read access to
the shared page. However, the child process does not have write access to strcpy(), which
caused SIGSEGV.

We executed the program by giving read and write access, as shown in Example 3-34 on
page 106.

Example 3-34 Program gets read and write access to shared segment

./ukey1 readwrite
parent:pagesize=4096
child:data=0x30000000
child :READ1 =[]
child :WRITE1=[abcd]
parent:READ1 =[abcd]
parent:WRITE1=[ABCD]
child :READ2 =[abcdABCD]
child :WRITE2=[efgh]
106 IBM AIX Continuous Availability Features

ls core
core not found

Because the child process was able to read and write the content of shared object, there is no
core file at this time.

User key API
The following data structures and APIs are declared for the user key feature. They are
declared in <sys/ukeys.h>. For a more detailed explanation of the APIs refer to the IBM white
paper “Storage Protection Keys on AIX Version 5.3”, which can be downloaded from:

ftp://ftp.software.ibm.com/common/ssi/rep_wh/n/PSW03013USEN/PSW03013USEN.PDF

In AIX V6.1 documentation, the white paper is available at:

http://publib.boulder.ibm.com/infocenter/pseries/v6r1/index.jsp

ukey_t
This is a basic type for a user-mode storage protection key.

ukeyset_t
This is a user key set with read/write attributes for each key in the set.

sysconf(_SC_AIX_UKEYS)
This returns the number of user keys available.

int ukey_enable()
This grants a process access to user keys memory protection
facilities. It returns the number of user keys configured on the system.

int ukey_getkey(void *addr, ukey_t *ukey)
This is used to determine the user key associated with a memory
address.

int ukey_protect (void *addr, size_t len, ukey_t ukey)
This modifies the memory's user key protection for a given address
range. This range must include only whole pages.

int ukeyset_init (ukeyset_t *nset, unsigned int flags)
This initializes a user key set with just UKEY_PUBLIC (unless
UK_INIT_ADD_PRIVATE flag is specified). The value of “flags” may
be UK_READ, UK_WRITE, or UK_RW.

int ukeyset_add_key (ukeyset_t *set, ukey_t key, unsigned int flags)
This adds a user key to a user key set.

int ukeyset_remove_key (ukeyset_t *set, ukey_t key, unsigned int flags)
This removes a user key from a user key set. The value of “flags” may
be UK_READ, UK_WRITE, or UK_RW.

int ukeyset_ismember (ukeyset_t set, ukey_t key, unsigned int flags)
This determines if a key is part of a keyset. The value of “flags” may be
UK_READ, UK_WRITE, or UK_RW.

int ukeyset_add_set (ukeyset_t *set, ukeyset_t aset)
This adds a user key set.

int ukeyset_remove_set (ukeyset_t *set, ukeyset_t rset)
This removes a user key set.

int pthread_attr_getukeyset_np (pthread_attr_t *attr, ukeyset_t *ukeyset)
This returns a thread attributes object's user key set attribute.
Chapter 3. AIX advanced continuous availability tools and features 107

ftp://ftp.software.ibm.com/common/ssi/rep_wh/n/PSW03013USEN/PSW03013USEN.PDF
http://publib.boulder.ibm.com/infocenter/pseries/v6r1/index.jsp

int pthread_attr_setukeyset_np (pthread_attr_t *attr, ukeyset_t *ukeyset)
This sets a thread attributes object's user key set attribute.

ukeyset_t ukeyset_activate (ukeyset_t set, int command)
This activates a user keyset and returns the current user keyset. The
value of “command” can be one of the following:
UKA_REPLACE_KEYS: Replace keyset with the specified keyset.
UKA_ADD_KEYS: Add the specified keyset to the current keyset.
UKA_REMOVE_KEYS: Remove the specified keyset from the active
keyset.
UKA_GET_KEYS: Read the current key value without updating the
current keyset. The input keyset is ignored.

3.7.8 Kernel debugger commands

The kernel debugger (KDB) has some new and changed commands to help you with storage
protection keys. These commands are listed in Table 3-6.

Table 3-6 New and changed kernel debugger commands

Kernel debugger command Explanation

kkeymap Displays the available hardware keys and the kernel keys that map to
each.

kkeymap <decimal kernel key number> Displays the mapping of the specified kernel key to a hardware key (-1
indicates that the kernel key is not mapped).

hkeymap <decimal hardware key number> Displays all the kernel keys that map to the specified hardware key.

kkeyset <address of kkeyset_t> Displays the kernel key access rights represented by a kernel keyset.
The operand of this command is the address of the pointer to the
opaque kernel keyset, not the kernel keyset structure itself.

hkeyset <64 bit hex value> Displays the hardware key accesses represented by this value if used
in the AMR, and a sampling of the kernel keys involved.

dr amr Displays the current AMR and the access rights it represents.

dr sp Includes the AMR value.

mr amr Allows modification of the AMR.

dk 1 <eaddr> Displays the hardware key of the resident virtual page containing
eaddr.

mst Displays the AMR and context stack values. A storage key protection
exception is indicated in excp_type as DSISR_SKEY.

iplcb Displays the IBM processor-storage-keys property of a CPU, which
indicates the number of hardware keys supported. This is in section
/cpus/PowerPC of the device tree.

vmlog Shows an exception value of EXCEPT_SKEY for a storage key
violation.

pft Displays the hardware key (labeled hkey) value for the page.

pte Displays the hardware key (labeled sk) value for the page.

scb Displays the hardware key default set for the segment.
108 IBM AIX Continuous Availability Features

In the following examples we show storage key features using the kernel debugger (kdb).

A full mapping of kernel-to-hardware keys is shown in Example 3-35.

Example 3-35 Kernel-to-hardware key mapping

(0)> kk
kkey hkey name(s)
 0 0 UPUBLIC
 1 1 UPRIVATE1
 32 0 FILE_DATA

 33 2 PUBLIC

 34 3 BLOCK_DEV LVM RAMDISK FILE_SYSTEM NFS CACHEFS AUTOFS KRB5 SWAPNFS
 36 4 COMMO NETM IPSEC USB GRAPHICS
 40 5 DMA PCI VDEV TRB IOMAP
 43 5 PRIVATE*

 75 6 VMM_PMAP IOS IPC RAS LDATA_ALLOC KRLOCK XMALLOC KKEYSET J2
 81 6 FILE_METADATA
 77 7 PROC INTR VMM LFS CRED LDR KER

The name for kernel key 3:

(0)> kk 3
 KKEY_UPRIVATE3(3) -> hkey -1

The hardware key corresponding to VMM_PMAP:

(0)> kk VMM_PMAP
KKEY_VMM_PMAP(75) -> hkey 6

The kernel keys corresponding to hardware key 6:

(0)> hk 6
 VMM_PMAP IOS IPC RAS LDATA_ALLOC KRLOCK XMALLOC KKEYSET J2 FILE_METADATA

The hardware keys and corresponding kernel keys in current context:

(0)> dr amr
amr : F3FC000000000000
 hkey 2 RW PUBLIC
 hkey 7 RW PROC INTR VMM LFS CRED LDR KER

Example 3-36 shows the Authority Mask Register (AMR) value for the current Machine Status
Table (MST).

Example 3-36 Machine Status Table (MST)

(0)> mst

heap Displays the kernel and hardware keys associated with an xmalloc
heap.

Kernel debugger command Explanation

Note: In Example 3-35, the kernel key number (kkey) is that of the first key in the row.
There is no guarantee that the other keys in the row are numbered sequentially.
Chapter 3. AIX advanced continuous availability tools and features 109

Machine State Save Area
iar : 000000000044F1F8 msr : 8000000000009032 cr : 44028028
lr : 00000000000544D0 ctr : 8000000000F958A0 xer : 00000000
mq : 00000000 asr : 000000025F20D001 amr : F3FC000000000000
r0 : 0000000000000001 r1 : 0FFFFFFFF3FFFDF0 r2 : 0000000002D45C30
r3 : 0000000000000000 r4 : 0000000000000000 r5 : 000000000000003F
r6 : 0000000000000000 r7 : 0000000000000001 r8 : 0000000000000000
r9 : 0000000000000000 r10 : 00000000000000FF r11 : 00000000000000FF
r12 : 0000000000000006 r13 : F100060800820400 r14 : 00000000DEADBEEF
r15 : 0000000000000002 r16 : 00000000000A1C50 r17 : 0000000000000000
r18 : 00000000020AF366 r19 : 00000000000034C8 r20 : 0000000002A2B580
r21 : 0000000000000000 r22 : F100080710800078 r23 : F100010007FA5800
r24 : 00000000020B7EF4 r25 : 0000000000000000 r26 : 0000000000000000
r27 : 0000000002570900 r28 : 00000000025708FE r29 : 00000000020B7E70
r30 : F10006C001356000 r31 : 00000000020B71C0

prev 0000000000000000 stackfix 0000000000000000 int_ticks 0000
cfar 0000000000003708
kjmpbuf 0000000000000000 excbranch 0000000000000000 no_pfault 00
intpri 0B backt 00 flags 00
hw_fru_id 00000001 hw_cpu_id 00000002

(0)> hks F3FC000000000000
 hkey 2 RW PUBLIC
 hkey 7 RW PROC INTR VMM LFS CRED LDR KER
(0)>

Example 3-37 shows the hardware keys for a page frame table (PFT) entry.

Example 3-37 Hardware keys for current PFT

(0)> pft 1
Enter the page frame number (in hex): 1000

VMM PFT Entry For Page Frame 0000001000 of 000027FFFF

ptex = 0000000000000800 pvt = F200800040010000 pft = F200800030060000
h/w hashed sid : 0000000000000 pno : 0000000100 psize : 64K key : 3
s/w hashed sid : 0000000000000 pno : 0000000100 psize : 64K
s/w pp/noex/hkey : 3/0/02 wimg : 2

> in use
> on scb list
> valid (h/w)
> referenced (pft/pvt/pte): 0/0/0
> modified (pft/pvt/pte): 1/0/0
base psx.................. 01 (64K) soft psx.................. 00 (4K)
owning vmpool............. 00000000 owning mempool............ 00000000
owning frameset........... 00000002
source page number............ 0100
dev index in PDT.............. 0000
next page sidlist. 0000000000002C10 prev page sidlist. 0000000000001010
next page aux......... 000000000000 prev page aux......... 000000000000
waitlist.......... 0000000000000000 logage.................... 00000000
nonfifo i/o............... 00000000 next i/o fr list...... 000000000000
110 IBM AIX Continuous Availability Features

(0)> more (^C to quit) ?

3.7.9 Storage keys performance impact

Kernel keys (protection gates) have some impact on system performance because they add
overhead to the functions that contain them, whether they are implicit gates used by
key-unsafe extensions, or explicit gates you use to make your extension key-aware. AIX
provides a mechanism to disable kernel keys for benchmarking and environments where the
kernel key performance loss is unacceptable.

If you make a key-safe extension by simply adding the minimal entry and exit point protection
gates, it might actually run slightly faster than it otherwise would on a keys-enabled system,
because explicit gates do not use the context stack. You must trade off granularity of
protection against overhead as you move into the key-protected realm, however. For
example, adding protection gates within a loop for precise access control to some private
object might result in unacceptable overhead. Try to avoid such situations, where possible, in
the framework of your specific key-protected design.

3.8 ProbeVue

Introduced in AIX V6.1, ProbeVue is a facility that enables dynamic tracing data collection. A
tracing facility is dynamic because it is able to gather execution data from applications without
any modification of their binaries or their source codes. The term “dynamic” refers to the
capability to insert trace points at run-time without the need to prepare the source code in
advance. Inserting specific tracing calls and defining specific tracing events into the source
code would require you to recompile the software and generate a new executable, which is
referred to as a static tracing facility.

Currently there are no standards in the area of dynamic tracing. POSIX has defined a tracing
standard for static tracing software only as described in Chapter 1 of the IBM Redbooks
publication IBM AIX Version 6.1 Differences Guide, SG24-7559. So, no compatibility between
ProbeVue and other UNIX dynamic tracing facilities can be expected until a standard is
established.

Dynamic tracing benefits and restrictions
Software debugging is often considered as a dedicated task running on development
systems or test systems trying to mimic real customer production systems.

However, this general statement is currently evolving due to the recent advances in hardware
capabilities and software engineering, such as:

� The processing and memory capabilities of high-end servers with associated storage
technologies have lead to huge systems into production.

� Dedicated solutions developed by system integrators (for example, based on ERP
software) implement numerous middleware and several application layers, and have lead
to huge production systems.

� Software is now mostly multithreaded and running on many processors. Thus, two runs
can behave differently, depending on the order of thread execution: multithreaded
applications are generally non-deterministic. Erroneous behaviors are more difficult to
reproduce and debug for such software.
Chapter 3. AIX advanced continuous availability tools and features 111

As a consequence, determining the root cause of a problem in today’s IT infrastructure has
become prohibitively expensive and a significant burden if the troubleshooting cannot be
accomplished on the production system itself.

The ProbeVue dynamic tracing facility provides a way to investigate problems on production
systems. ProbeVue captures execution data without installing dedicated instrumented
versions of applications or kernels that require a service interruption for application restart or
server reboot.

Additionally, ProbeVue helps you to find the root cause of errors that may occur on
long-running jobs where unexpected accumulated data, queue overflows and other defects of
the application or kernel are revealed only after many days or months of execution.

Because ProbeVue is able to investigate any kind of application if a Probe manager is
available (see “Probe manager” on page 117), it is a privileged tracing tool capable of
analyzing a complex defect as a cascading failure between multiple subsystems. With a
single tracing tool, ProbeVue allows a unified instrumentation of a production system.

Note the following ProbeVue considerations:

� Tracing an executable without modifying it requires you to encapsulate the binary code
with a control execution layer. This control layer will interrupt the mainline code and start
the instrumentation code at the trace point, to allow context tracing. The instrumented
code is executed through an interpreter to prevent errors in this code from affecting the
application or the kernel. Interpreter languages are known to be slower than compiled
languages; the dynamic interpreted tracing points are potentially slower than the static
compiled ones.

� System administrators and system integrators need to have deep application architecture
knowledge, and not just knowledge about the tracing tool. If tracing points and actions are
not set properly, then investigation of the software executed may be ineffective (in addition
to making the application potentially slower). Also, you must keep in mind that application
debugging in earlier development stages is always more effective, because software
developers have a much better inside view of application architecture.

For these reasons, ProbeVue is a complementary tracing tool to the static tracing methods,
adding new and innovative tracing capabilities to running production systems.

ProbeVue dynamic tracing benefits
As a dynamic tracing facility, ProbeVue has the following major benefits:

� Trace hooks do not have to be pre-compiled. ProbeVue works on unmodified kernel and
user applications.

� The trace points or probes have no effect (do not exist) until they are dynamically enabled.

� Actions (specified by the instrumentation code) to be executed at a probe point or the
probe actions are provided dynamically at the time the probe is enabled.

� Trace data captured as part of the probe actions are available for viewing immediately and
can be displayed as terminal output or saved to a file for later viewing.

ProbeVue can be used for performance analysis as well as for debugging problems. It is
designed to be safe to run on production systems and provides protection against errors in
the instrumentation code.

The section defines some of the terminology used. The subsequent sections introduce Vue,
the programming language used by ProbeVue and the probevue command that is used to
start a tracing session.
112 IBM AIX Continuous Availability Features

3.8.1 ProbeVue terminology

ProbeVue introduces a terminology relative to the concepts used in dynamic tracing. The
following list describes the terms used with ProbeVue.

Probe A probe is a software mechanism that interrupts normal system action
to investigate and obtain information about current context and system
state. This is also commonly referred to as tracing.

Tracing actions or probe actions
These terms refer to the actions performed by the probe. Typically,
they include the capturing of information by writing the current values
of global and context-specific information to a trace buffer. The
obtained information, thus captured in the trace buffer, is called trace
data. The system usually provides facilities to consume the trace; that
is, to read the data out of the trace buffer and make it available to
users.

Probe point A probe point identifies the points during normal system activity that
are capable of being probed. With dynamic tracing, probe points do
not have any probes installed in them unless they are being probed.
- Enabling a probe is the operation of attaching a probe to a probe
point.
- Disabling a probe is the operation of removing a probe from a probe
point.
- Triggering or firing a probe refers to the condition where a probe is
entered and the tracing actions are performed.

ProbeVue supports two kinds of probe points.

Probe location This is a location in user or kernel code where some tracing action (for
example, capture of trace data) is to be performed. Enabled probes at
a probe location fire when any thread executing code reaches that
location.

Probe event This is an abstract event at whose occurrence some tracing action is
to be performed. Probe events do not easily map to a specific code
location. Enabled probes that indicate a probe event fire when the
abstract event occurs.

ProbeVue also distinguishes probe points by their type.

Probe type This identifies a set of probe points that share some common
characteristics; for instance, probes that when enabled fire at the entry
and exit of system calls, or probes that when enabled fire when
system statistics are updated.

Distinguishing probes by probe types induces a structure to the wide variety of probe points.
So, ProbeVue requires a probe manager to be associated with each probe type.

Probe manager This is the software code that defines and provides a set of probe
points of the same probe type (for example, the system calls probe
manager).

3.8.2 Vue programming language

The Vue programming language is used to provide your tracing specifications to ProbeVue.
The Vue programming language is often abbreviated to the Vue language or just to Vue.
Chapter 3. AIX advanced continuous availability tools and features 113

A Vue script or Vue program is a program written in Vue. You can use a Vue script to:

� Identify the probe points where a probe is to be dynamically enabled.

� Identify the conditions, if any, which must be satisfied for the actions to be executed when
a probe fires.

� Identify the actions to be executed, including what trace data to capture.

� Associate the same set of actions for multiple probe points.

In short, a Vue script tells ProbeVue where to trace, when to trace, and what to trace.

It is recommended that Vue scripts have a file suffix of .e to distinguish them from other file
types, although this is not a requirement.

3.8.3 The probevue command

The probevue command is used to start a dynamic tracing session or a ProbeVue session.
The probevue command takes a Vue script as input, reading from a file or from the command
line, and activates a ProbeVue session. Any trace data that is captured by the ProbeVue
session can be printed to the terminal or saved to a user-specified file as per options passed
in the command line.

The ProbeVue session stays active until a <Ctrl-C> is typed on the terminal or an exit action
is executed from within the Vue script.

Each invocation of the probevue command activates a separate dynamic tracing session.
Multiple tracing sessions may be active at one time, but each session presents only the trace
data that is captured in that session.

Running the probevue command is considered a privileged operation, and privileges are
required for non-root users who wish to initiate a dynamic tracing session. For a detailed
description of the probevue command, refer to AIX Version 6.1 Commands Reference,
Volume 4, SC23-5246.

3.8.4 The probevctrl command

The probevctrl command changes and displays the ProbeVue dynamic tracing parameters,
the per-processor trace buffer size, the consumed pinned memory, the user owning the
session, the identifier of the process that started the session, and the information on whether
the session has kernel probes for the ProbeVue sessions.

For a detailed description of the probevctrl command, refer to AIX Version 6.1 Commands
Reference, Volume 4, SC23-5246.

3.8.5 Vue overview

Vue is both a programming and a script language. It is not an extension of C language, nor a
simple mix of C and awk. It has been specifically designed as a dedicated dynamic tracing
language. Vue supports a subset of C and scripting syntax that is most beneficial for dynamic
tracing purposes.

This section describes the structure of a Vue script.
114 IBM AIX Continuous Availability Features

Structure of a Vue script
A Vue script consists of one or more clauses. The clauses in a Vue script can be specified in
any order. Figure 3-3 is a typical layout of a Vue script.

Figure 3-3 Structure of a Vue script

Following are two Vue script examples.

� This canonical “Hello World” program prints "Hello World" into the trace buffer and exits.

#!/usr/bin/probevue

/* Hello World in probevue */
/* Program name: hello.e */

@@BEGIN
{

printf("Hello World\n");
exit();

}

� This “Hello World” program prints "Hello World" when <Ctrl-C> is typed on the keyboard.

#!/usr/bin/probevue

/* Hello World 2 in probevue */
/* Program name: hello2.e */

@@END
{

printf("Hello World\n");
}

Each clause of a Vue script consists of the following three elements:

� Probe point specification

The probe point specification identifies the probe points to be dynamically enabled.

� Action block

The action block is used to identify the set of probe actions to be performed when the
probe fires.
Chapter 3. AIX advanced continuous availability tools and features 115

� An optional predicate

The predicate, if present, identifies a condition that is to be checked at the time the probe
is triggered. The predicate must evaluate to TRUE for the probe actions of the clause to
be executed.

These elements are described in more detail in the following sections.

Probe point specification
A probe point specification identifies the code location whose execution, or the event whose
occurrence, should trigger the probe actions. Multiple probe points can be associated with the
same set of probe actions and the predicate, if any, by providing a comma-separated list of
probe specifications at the top of the Vue clause.

The format for a probe specification is probe-type specific. The probe specification is a tuple
of ordered list of fields separated by colons. It has the following general format:

@@<probetype>:<probetype field1>:...:<probetype fieldn>:<location>

AIX V6.1 supports the following probe types:

1. User Function Entry probes (or uft probes)

For example, a uft probe at entry into any function called foo() (in the main executable or
any of the loaded modules including libraries) in process with ID = 34568:

@@uft:34568:*:foo:entry

2. System Call Entry/Exit probes (or syscall probes)

For example, a syscall probe at the exit of a read system call:

@@syscall:*:read:exit

3. Probes that fire at specific time intervals (or interval probes)

For example, an interval probe to fire every 500 milliseconds (wall clock time):

@@interval:*:clock:500

Action block
The action block identifies the set of actions to be performed when a thread hits the probe
point. Supported actions are not restricted to the capturing and formatting of trace data; the
full power of Vue can be employed.

An action block in Vue is similar to a procedure in procedural languages. It consists of a
sequence of statements that are executed in order. The flow of execution is essentially
sequential. The only exceptions are that conditional execution is possible using the if-else
statement, and control may be returned from within the action block using the return
statement.

Unlike procedures in procedural languages, an action block in Vue does not have an output
or a return value. And it does not have inherent support for a set of input parameters. On the
other hand, the context data at the point where a probe is entered can be accessed within the
action block to regulate the actions to be performed.

Predicate
Predicates should be used when execution of clauses at probe points must be performed
conditionally.
116 IBM AIX Continuous Availability Features

The predicate section is identified by the presence of the when keyword immediately after the
probe specification section. The predicate itself consists of regular C-style conditional
expressions with the enclosing parentheses.

A predicate has the following format:

when (<condition>)

For example, this is a predicate indicating that probe points should be executed for process
ID = 1678:

when (__pid == 1678)

Probe manager
The probe manager is an essential component of dynamic tracing. Probe managers are the
providers of the probe points that can be instrumented by ProbeVue.

Probe managers generally support a set of probe points that belong to some common domain
and share some common feature or attribute that distinguishes them from other probe points.
Probe points are useful at points where control flow changes significantly, at points of state
change or other similar points that of significant interest. Probe managers are careful to select
probe points only in locations that are safe to instrument.

ProbeVue currently supports the following three probe managers:

1. System call probe manager

The system call (syscall) probe manager supports probes at the entry and exit of
well-defined and documented base AIX system calls. The syscall probe manager accepts
a four tuple probe specification in one of the following formats where the
<system_call_name> field is to be substituted by the actual system call name.:

* syscall:*:<system_call_name>:entry
* syscall:*:<system_call_name>:exit

These indicate that a probe is to be placed at the entry and exit of system calls. Assigning
the asterisk (*) to the second field indicates that the probe will be fired for all processes. In
addition, a process ID can be specified as the second field of the probe specification to
support probing of specific processes.

* syscall:<process_ID>:<system_call_name>:entry
* syscall:<process_ID>:<system_call_name>:entry

2. User function probe manager

The user function tracing (uft) probe manager supports probing user space functions that
are visible in the XCOFF symbol table of a process. These entry points, usable as probe
points, are currently are restricted to those written in C language text file. The uft probe
manager currently accepts a five tuple probe specification only in the following format:

uft:<processID>:*:<function_name>:entry

Note: The uft probe manager requires the process ID for the process to be traced and
the complete function name of the function at whose entry point the probe is to be
placed. Further, the uft probe manager currently requires that the third field be set to an
asterisk (*) to indicate that the function name is to be searched in any of the modules
loaded into the process address space, including the main executable and shared
modules.
Chapter 3. AIX advanced continuous availability tools and features 117

3. Interval probe manager

The interval probe manager supports probe points that fire at a user-defined time-interval.
The probe points are not located in kernel or application code, but instead are based on
wall clock time interval-based probe events. The interval probe manager accepts a four
tuple probe specification in the following format:

@@interval:*:clock:<# milliseconds>

The second field is an asterisk (*), indicating that the probe can be fired in any process.
Currently, the interval probe manager does not filter probe events by process IDs. For the
third field, the only value supported is currently the clock keyword that identifies the probe
specification as being for a wall clock probe.

The fourth or last field, that is, the <# milliseconds> field, identifies the number of
milliseconds between firings of the probe. Currently, the interval probe manager requires
that the value for this field be exactly divisible by 100 and consist only of digits 0 - 9. Thus,
probe events that are apart by 100ms, 200ms, 300ms, and so on, are allowed.

Vue functions
Unlike programs written in C or in FORTRAN programming languages or in a native
language, scripts written in Vue do not have access to the routines provided by the AIX
system libraries or any user libraries. However, Vue supports its own special library of
functions useful for dynamic tracing programs. Functions include:

Tracing-specific functions
get_function Returns the name of the function that encloses the current probe
timestamp Returns the current time stamp
diff_time Finds the difference between two time stamps

Trace capture functions
printf Formats and prints values of variables and expressions
trace Prints data without formatting
stktrace Formats and prints the stack trace

List functions
list Instantiate a list variable
append Append a new item to list
sum, max, min, avg, count

Aggregation functions that can be applied on a list variable

C-library functions
atoi, strstr Standard string functions

Functions to support tentative tracing
start_tentative, end_tentative

Indicators for start and end of tentative tracing
commit_tentative, discard_tentative

Commit or discard data in tentative buffer

Miscellaneous functions
exit Terminates the tracing program
get_userstring Read string from user memory
118 IBM AIX Continuous Availability Features

The Vue string functions can be applied only on variables of string type and not on a pointer
variable. Standard string functions like strcpy(), strcat(), and so on, are not necessary in Vue,
because they are supported through the language syntax itself.

For additional information, see the article “ProbeVue: Extended Users Guide Specification”
at:

http://www.ibm.com/developerworks/aix/library/au-probevue/

3.8.6 ProbeVue dynamic tracing example

This is a basic ProbeVue example to show how ProbeVue works and how to use ProbeVue
on a running executable without restarting or recompiling it.

The following steps must be performed:

1. The C program shown in Example 3-38, named pvue, is going to be traced dynamically.

Example 3-38 Basic C program to be dynamically traced: pvue.c

#include <fcntl.h>
main()
{
int x, rc;
int buff[100];

for (x=0; x<5; x++){
 sleep(3);
 printf("x=%d\n",x);
}
sleep (3);
fd=open("./pvue.c",O_RDWR,0);
x =read(fd,buff,100);
printf("[%s]\n",buff);
}

2. We compile and execute the program in background:

cc -q64 -o pvue pvue.c
./pvue &
[1] 262272

The command returns the process ID (212272), which will be used as a parameter for the
Vue script.

3. In order to trace dynamically the number of calls executed by the pvue process to the
subroutines printf(), sleep(), entry of read(), and exit of read(), we have developed a
ProbeVue script, named pvue.e, shown in Example 3-39 on page 119.

The script uses the process ID as an entry parameter ($1). Note also the first line of the
Vue script, specifying that the probevue program is used as an interpreter for this script.

Example 3-39 Sample Vue script, named pvue.e

#!/usr/bin/probevue
@@BEGIN
{
 printf("Tracing starts now\n");
}
@@uft:$1:*:printf:entry
Chapter 3. AIX advanced continuous availability tools and features 119

http://www.ibm.com/developerworks/aix/library/au-probevue/

{
 int count;
 count = count +1;
 printf("printf called %d times\n",count);
}
@@uft:$1:*:sleep:entry
{
 int count1;
 count1 = count1 +1;
 printf("sleep called %d times\n",count1);
}
@@syscall:*:read:exit
 when (__pid == $1)
{
 printf("read entered\n");
}
@@syscall:*:read:entry
 when (__pid == $1)
{
 printf("read exited\n");
}
@@END
{
 printf("Tracing ends now\n");
}

4. We execute the pvue.e script with the probevue command passing the process ID to be
traced as parameter:

probevue ./pvue.e 262272

We obtain the tracing output shown in Example 3-40.

Example 3-40 Start Vue script providing pid

./pvue.e 262272
Tracing starts now
printf called 1 times
sleep called 1 times
printf called 2 times
/*
* Although the sleep precedes the printf in the loop, the reason we got the printf
in the trace was because the program was in the middle of the first sleep when we
started tracing it, and so the first thing we traced was the subsequent printf.
*/
sleep called 2 times
printf called 3 times
sleep called 3 times
printf called 4 times
sleep called 4 times
printf called 5 times
sleep called 5 times
read exited
read entered
printf called 6 times
^CTracing ends now
#

120 IBM AIX Continuous Availability Features

Vue built-in variables
Vue defines the following set of general purpose built-in variables:

__tid Thread Id of target thread

__pid Process Id of target thread

__ppid Parent process Id of target thread

__pgid Process group Id of target thread

__pname Process name of target thread

__uid, __euid Real and effective user Id of target thread

__trcid Process Id of tracing thread

__errno Current errno value for the target thread

__kernelmode Kernel mode (value = 1) or User mode (value = 0)

__execname Current executable name

__r3,..,__r10 GP Register values for function parameters or return values

Built-in variables may be used in the predicate section of a Vue clause. To see __pid, refer to
Example 3-39 on page 119.

String
The string data type is a representation of string literals. The user specifies the length of the
string type. Here is an example of a string declaration:

“String s[25]”

The following operators are supported for the string data types:

"+", "=", "==", "!=", ">", ">=", "<" and "<=".

Vue supports several functions that return a string data type. It automatically converts
between a string data type and C-style character data types (char * or char[]) as needed.

List
List is used to collect a set of integral type values. It is an abstract data type and cannot be
used directly with the standard unary or binary operators. Instead, Vue supports following
operations for the list type:

� A constructor function, list() to create a list variable.

� A concatenation function, append() to add an item to the list.

� The "=" operator that allows a list to be assigned to another.

� A set of aggregation functions that operate on a list variable and return a scalar (integer)
value like sum(), avg(), min(), max(), and so on.

Example 3-41 on page 123 uses the list variable lst. Prototypes and a detailed explanation
of List data types can be found in “Chapter 4. Dynamic Tracing” in AIX Version 6.1 General
Programming Concepts: Writing and Debugging Programs, SC23-5259.

Symbolic constants
Vue has predefined symbolic constants which can be used:-

� NULL
Chapter 3. AIX advanced continuous availability tools and features 121

� Errno names
� Signal names
� FUNCTION_ENTRY: Identifies function entry point. Used with get_location_point()
� FUNCTION_EXIT: Identifies function exit point. Used with get_location_point()

Supported keywords/data-types of C in Vue
Table 3-7 lists the C keywords used in the Vue language.

Table 3-7 C keywords in Vue

Elements of shell
Vue translates exported shell variables (specified by the $ prefix) and positional parameters
into their real values during the initial phase of compilation. So, $1, $2, and so on, will be
replaced with corresponding value by ProbeVue.

When assigning general environment variables to a string, you need to make sure it starts
and ends with a backward (\) slashmark. For instance, the environment variable
“VAR=abcdef” will result in an error when assigned to a string. Defining it as “VAR=\”abcdef\””
is the proper way of using it in a Vue script.

Example 3-41 illustrates the use of various variable types, and also uses kernel variables.
The comments provided in the Vue script explain the scope of various variables.

Supported Allowed in header files only Unsupported

char auto break

double const case

else extern continue

enum register default

float static do

if typedef for

int volatile goto

long switch

return while

short

signed

sizeof

struct

union

unsigned

void

Restriction: The special shell parameters like $$, $@, and so on are not supported in
Vue. However, they can be obtained by other predefined built-in variables.
122 IBM AIX Continuous Availability Features

Example 3-41 Sample Vue script pvue2.e

#!/usr/bin/probevue

/*
 * Strings are by default Global variables
 */
String global_var[4096];

/*
 * Global variables are accessible throughout the scope of Vue file in any clause
 */
__global global_var1;
__kernel long lbolt;

/*
 * Thread variables are like globals but instantiated per traced thread first
 * time it executes an action block that uses the variable
 */
__thread int thread_var;

/*
 * Built-in variables are not supposed to be defined. They are by default
 * available to the clauses where is makes any sense. They are : __rv, __arg1,
 * __pid etc. __rv (return value for system calls) makes sense only when system
 * call is returning and hence available only for syscall()->exit() action block.
 * While __arg1, __arg2 and arg3 are accessible at syscall()->entry(). As system
 * call read() accespts only 3 arguments so only __arg1, __arg2 and __arg2 are
 * valid for read()->entry() action block.
 * __pid can be accessed in any clause as current process id is valid everywhere
 */
int read(int fd, void *buf, int n);

@@BEGIN
{

global_var1=0;
lst=list();
printf("lbolt=%lld\n",lbolt);

}

@@uft:$1:*:printf:entry
{

global_var1=global_var1+1;
append(lst,1);

}

/*
 * Valid built-in variables : __pid, __arg1, __arg2, __arg3
 * __rv not valid here, its valid only inside read()->exit()
 */
@@syscall:*:read:entry

when (__pid == $1)
{

/*
 * Automatic variable is not accessible outside their own clause. So auto_var
Chapter 3. AIX advanced continuous availability tools and features 123

 * will result in error out of read()->entry()
*/

__auto int auto_var;

thread_var=__arg1;
global_var=get_userstring(__arg2,15);
global_var1=__arg3;

printf("At read()->entry():\n");
printf("\tfile descriptor ====>%d\n", thread_var);
printf("\tfile context (15 bytes)====>%s\n", global_var);
printf("\tMAX buffer size ====>%d\n", global_var1);

}

/* Valid built-in variables : __pid, __rv
 * __arg1, __arg2 and __arg2 are not valid here, they are valid only in
 * read()->entry()
 */
@@syscall:*:read:exit

when (__pid == $1)
{

printf("At read()->exit(): bytes read=%d by read(%d, %s, %d)\n",__rv,
 thread_var, global_var, global_var1);
}
@@END
{

/*
 * auto_var not accessible here as its an Automatic variable in clause

"read:entry"
 */
printf("\nthread_var=%d global_var=%s global_var1=%d\n", thread_var,

 global_var, global_var1);
}

Example 3-42 displays the C file that will be traced using the Vue script.

Example 3-42 Sample C program to be traced

#include <fcntl.h>
main()
{

int x,rc,fd;
int buff[4096];
for (x=0; x<5; x++){

sleep(3);
printf("x=%d\n",x);
fd=open("./pvue.c",O_RDWR,0);
rc =read(fd,buff,4096);
close(fd);

}
}

Example 3-43 displays the output of the program traced.
124 IBM AIX Continuous Availability Features

Example 3-43 Output of pvue2.e script

./pvue2.e 356786
lbolt=13454557
At read()->entry():
 file descriptor ====>3
 file context (15 bytes)====>
 MAX buffer size ====>4096
At read()->exit(): bytes read=190 by read(3, , 4096)
At read()->entry():
 file descriptor ====>3
 file context (15 bytes)====>#include <fcntl
 MAX buffer size ====>4096
At read()->exit(): bytes read=190 by read(3, #include <fcntl, 4096)
At read()->entry():
 file descriptor ====>3
 file context (15 bytes)====>#include <fcntl
 MAX buffer size ====>4096
At read()->exit(): bytes read=190 by read(3, #include <fcntl, 4096)
At read()->entry():
 file descriptor ====>3
 file context (15 bytes)====>#include <fcntl
 MAX buffer size ====>4096
At read()->exit(): bytes read=190 by read(3, #include <fcntl, 4096)
At read()->entry():
 file descriptor ====>3
 file context (15 bytes)====>#include <fcntl
 MAX buffer size ====>4096
At read()->exit(): bytes read=190 by read(3, #include <fcntl, 4096)
^C

3.8.7 Other considerations for ProbeVue

ProbeVue is supported on workload partitions (WPARs). However, WPARs cannot be
migrated if any ProbeVue sessions are active on it. ProbeVue privileges must be granted on
WPARs.

3.9 Xmalloc debug enhancements in AIX V6.1

Xmalloc debug (XMDBG) is a service provided as part of the xmalloc allocator. When
enabled in the kernel, XMDBG provides significant error checking for the xmalloc() and
xmfree() kernel services.

XMDBG will catch errors that might otherwise result in system outages, such as traps, Data
Storage Interrupts (DSIs), and hangs. Typical errors include freeing memory that is not
allocated, allocating memory without freeing it (memory leak), using memory before
initializing it, and writing to freed storage.

In previous AIX versions, XMDBG features required a system reboot to be enabled.
Additionally, because this was essential for catching certain types of memory issues, it was
common to request that a customer enable XMDBG and then recreate the problem.
Chapter 3. AIX advanced continuous availability tools and features 125

This places a large part of the burden of data collection on the customer, and limited
first-failure data capture ability (FFDC). With AIX V6.1 (and also AIX V5.3), XMDBG will be
enabled by default with multiple debugging levels (unlike in AIX 5.3, which only allows
enable/disable), and switching between these levels does not require system reboot.

3.9.1 New features in xmalloc debug

The following new features have been added to the xmalloc debug enhancement for Run
time error checking (RTEC):

� Four debugging levels for xmalloc debug (XMDBG) are provided:

– disabled (debug level -1)
– minimal (debug level 1): ERRCHECK_MINIMAL
– normal (debug level 3): ERRCHECK_NORMAL
– detail (debug level 7): ERRCHECK_DETAIL
– maximal (debug level 9): ERRCHECK_MAXIMAL

Disabled and detail modes are the same as off and on in AIX V5.3. Minimal and normal
modes will add randomized information gathering, with all the First Failure Data Capture
capability of detail XMDBG, but with a lessened probability of occurring (which reduces
the performance impact, but also lessens the likelihood of catching a potential problem).

The default checking level on AIX V6.1 is ERRCHECK_NORMAL. In AIX V5.3, it used to
be ERRCHECK_MINIMAL. Maximal error checking is performed at
ERRCHECK_MAXIMAL.

� The xmalloc run time error checking (RTEC) function is integrated into the RAS
component hierarchy and appears as the alloc component. The alloc component has
several subcomponents. XMDBG capabilities are controlled under the alloc.xmdbg
subcomponent. This will enable system administrators to alter many tunable aspects of
XMDBG using the errctrl command.

� Debug features are enabled across any heap created via the heap_create() interface,
including private heaps.

3.9.2 Enabling/disabling xmalloc RTEC and displaying current value

The xmalloc RTEC can be controlled in different ways. At one level, xmalloc RTEC can be
disabled (or re-enabled) along with all other AIX run-time error checking, or it can be
controlled individually.

Example 3-1 on page 57 shows how to use the smit menu command smit ffdc to enable
RTEC. Alternatively, you can use the following commands:

� Turn Off Error Checking for xmalloc

errctrl -c alloc.xmdbg errcheckoff

� Turn On Error Checking for xmalloc for the previously set checking level or default level if
no previous check level exists.

errctrl -c alloc.xmdbg errcheckon

Note: This section is meant only for support personnel or for system administrators under
the supervision of support personnel. End customer use without supervision is not
recommended.
126 IBM AIX Continuous Availability Features

To display the current RTEC level for xmalloc and its subcomponents, execute the following
command:

errctrl -c alloc -q -r

Example 3-44 RTEC level for alloc and its subcomponent

errctrl -c alloc -q -r
---+-------+-------+-------+--------
 | Have |ErrChk |LowSev |MedSev
 Component name | alias | /level| Disp | Disp
---+-------+-------+-------+--------
alloc
 .heap0 | NO | ON /0 | 48 | 64
 .xmdbg | NO | ON /9 | 64 | 80

Example 3-44 shows the RTEC level for alloc and its subcomponents. Note that alloc.xmdbg
is set to errorcheckmaximum (which is explained in more detail in 3.9.3, “Run-time error
checking (RTEC) levels for XMDBG (alloc.xmdbg)” on page 127). In this example,
alloc.heap0 has no error checking enabled.

To display the current RTEC level for any subcomponent of xmalloc, execute:

errctrl -c alloc.<subcomponent> -q -r

For example, the command errctrl -c alloc.xmdbg -q -r will show the RTEC level for
alloc.xmdbg.

3.9.3 Run-time error checking (RTEC) levels for XMDBG (alloc.xmdbg)

The probability of taking each option will be determined by the debug level set for the
alloc.xmalloc component. However, there is also a way to tune individual probabilities to
desired levels. For further information about forcing individual tunables, refer to 3.9.4,
“XMDBG tunables affected by error check level” on page 131.

Error checking characteristics can be changed for xmalloc subsystem with
component-specific tunables. All options can be configured at run time by using the errctrl
command.

Minimal Error Checking Level
When the error-checking level is set to minimal (level 1), the checks and techniques used by
xmalloc are applied at fairly low frequencies. It can be set to minimal by executing:

errctrl -c alloc.xmdbg errcheckminimal

The frequency of various xmalloc debug tunables can be viewed by using the kdb
subcommand xm –Q. Example 3-45 on page 128 shows the frequencies for various tunables.

Minimal checking is the default checking level on version 5. The frequency that appears next
to each tunable is proportional to the frequency base (1024). From the example, you can see
that the Ruin All Data technique will be applied 5 times out of every 1024 (0x400) calls to
xmalloc() (about 0.5% of every 1024 xmalloc() calls). Also, 16 byte allocations will be
promoted about 10 times out of every 1024 calls to xmalloc(), which is about 1% of the time.

Note: Executing errctrl with the –P flag will apply the changes for future reboots as well.
There was no support for the -P flag in prior AIX versions.
Chapter 3. AIX advanced continuous availability tools and features 127

Example 3-45 Frequencies for xmalloc debug tunable at minimal level

(0)> xm -Q
XMDBG data structure @ 00000000025426F0
Debug State: Enabled
Frequency Base: 00000400
Tunable Frequency
Allocation Record 00000033
Ruin All Data 00000005
Trailer non-fragments 00000005
Trailer in fragments 00000005
Redzone Page 00000005
VMM Check 0000000A
Deferred Free Settings
 Fragments 00000005
 Non-fragments 00000005
 Promotions 00000066

Page Promotion
 Frag size Frequency
 [00010] 0000000A
 [00020] 0000000A
 [00040] 0000000A
 [00080] 0000000A
 [00100] 0000000A
 [00200] 0000000A
 [00400] 0000000A
 [00800] 0000000A
 [01000] 0000000A
 [02000] 0000000A
 [04000] 0000000A
 [08000] 0000000A

Ratio of memory to declare a memory leak: 0x400(1024)/0x400(1024)
Outstanding memory allocations to declare a memory leak: -1
Deferred page reclamation count (-1 == when necessary): 16384
Minimum allocation size to force a record for: 1048576

Normal error checking level
When the error checking level is set to normal (level 3), the checks and techniques are
applied at higher frequencies than what minimal checking provides. Normal error checking is
the default level setting in AIX V6.1. It can be set by executing the following command:

errctrl -c alloc.xmdbg errchecknormal

In Example 3-46 on page 128, frequencies for xmalloc tunables at normal level are shown. A
“trailer” will be added to a fragment about 51 (0x33) times out of every 1024 times a fragment
is allocated (about 5%). The deferred free technique will be applied to page promotions about
153 (0x99) times out of every 1024 (0x400) times a fragment is promoted, which is about
15% of the time.

Example 3-46 Frequencies for xmalloc tunables at normal level

(0)> xm -Q
XMDBG data structure @ 00000000025426F0
Debug State: Enabled

Note: The frequency of checks made for all checking levels is subject to change.
128 IBM AIX Continuous Availability Features

Frequency Base: 00000400
Tunable Frequency
Allocation Record 00000099
Ruin All Data 00000033
Trailer non-fragments 0000000A
Trailer in fragments 00000033
Redzone Page 0000000A
VMM Check 0000000A
Deferred Free Settings
 Fragments 0000000A
 Non-fragments 0000000A
 Promotions 00000099

Page Promotion
 Frag size Frequency
 [00010] 0000000D
 [00020] 0000000D
 [00040] 0000000D
 [00080] 0000000D
 [00100] 0000000D
 [00200] 0000000D
 [00400] 0000000D
 [00800] 0000000D
 [01000] 0000000D
 [02000] 0000000D
 [04000] 0000000D
 [08000] 0000000D

Ratio of memory to declare a memory leak: 0x400(1024)/0x400(1024)
Outstanding memory allocations to declare a memory leak: -1
Deferred page reclamation count (-1 == when necessary): 16384
Minimum allocation size to force a record for: 1048576

Detail error checking level
Detail error checking level corresponds to level 7. The checks and techniques are applied at
fairly high frequencies. This gives a high checking level with a goal of affecting the overall
system performance as little as possible. It can be set by executing:

errctrl -c alloc.xmdbg errcheckdetail

Example 3-47 shows frequencies for various tunables of alloc.xmdbg at level errcheckdetail.
For instance, Allocation Records are kept on every call to xmalloc() (0x400 out of 0x400
calls). 0x80 byte Fragments are promoted 0x200 out of every 0x400 times the 0x80 byte
fragment is allocated (50%).

Example 3-47 Frequencies for xmalloc at detail level

(0)> xm -Q
XMDBG data structure @ 00000000025426F0
Debug State: Enabled
Frequency Base: 00000400
Tunable Frequency
Allocation Record 00000400
Ruin All Data 00000200
Trailer non-fragments 00000066
Trailer in fragments 00000200
Redzone Page 00000266
VMM Check 00000266
Deferred Free Settings
 Fragments 00000066
Chapter 3. AIX advanced continuous availability tools and features 129

 Non-fragments 00000066
 Promotions 00000200

Page Promotion
 Frag size Frequency
 [00010] 00000200
 [00020] 00000200
 [00040] 00000200
 [00080] 00000200
 [00100] 00000200
 [00200] 00000200
 [00400] 00000200
 [00800] 00000200
 [01000] 00000200
 [02000] 00000200
 [04000] 00000200
 [08000] 00000200

Ratio of memory to declare a memory leak: 0x400(1024)/0x400(1024)
Outstanding memory allocations to declare a memory leak: -1
Deferred page reclamation count (-1 == when necessary): 16384
Minimum allocation size to force a record for: 1048576

Maximal error checking level
At maximal error checking level, all tunables are set at maximum levels (level 9).
Performance is greatly affected at this checking level. All the frequencies should match the
frequency base, meaning all checks are always done. It is set by executing:

errctrl -c alloc.xmdbg errchecklevel=9

Example 3-48 shows frequencies for various tunables of alloc.xmdbg at the highest RTEC
level.

Example 3-48 Frequencies for xmalloc at maximal level

(0)> xm -Q
XMDBG data structure @ 00000000025426F0
Debug State: Enabled
Frequency Base: 00000400
Tunable Frequency
Allocation Record 00000400
Ruin All Data 00000400
Trailer non-fragments 00000400
Trailer in fragments 00000400
Redzone Page 00000400
VMM Check 00000400
Deferred Free Settings
 Fragments 00000400
 Non-fragments 00000400
 Promotions 00000400

Page Promotion
 Frag size Frequency
 [00010] 00000400
 [00020] 00000400
 [00040] 00000400
 [00080] 00000400
 [00100] 00000400
 [00200] 00000400
 [00400] 00000400
130 IBM AIX Continuous Availability Features

 [00800] 00000400
 [01000] 00000400
 [02000] 00000400
 [04000] 00000400
 [08000] 00000400

Ratio of memory to declare a memory leak: 0x400(1024)/0x400(1024)
Outstanding memory allocations to declare a memory leak: -1
Deferred page reclamation count (-1 == when necessary): 16384
Minimum allocation size to force a record for: 1048576

3.9.4 XMDBG tunables affected by error check level

As previously mentioned, xmalloc RTEC features are activated for a given allocation based
on probabilities. The errctrl command that controls the tunables takes the probability of
application (frequency) as an argument.

In AIX V6.1, the user can set the probability of a check being performed by specifying the
frequency of a tunable as a number between 0 and 1024. This is the number of times out of
the base frequency (1024) that the technique is to be applied by xmalloc. For example, to
request 50%, the user specifies a frequency of 512.

Frequencies can be input as decimal or hex numbers, so 50% can be specified as 0x200. As
a convenient alternative, the frequency can be expressed as a percentage. To do this, the
user specifies a number between 0 and 100 followed by the percent (%) sign. The following
sections detail the RTEC tunables for the xmalloc.xmdbg component.

Keep an allocation record
This option sets the frequency of keeping a record for an allocation. Records are also kept if
any other debug technique is applied, so the percentage of allocations with a record may be
considerably larger than this number would otherwise indicate.

The allocation record contains a three-level stack trace-back of the xmalloc() and xmfree()
callers, as well as other debug information about the allocated memory. The presence of a
record is a minimum requirement for xmalloc run time error checking.

errctrl -c alloc.xmdbg alloc_record=<frequency>

Ruin storage
This option sets the frequency at which xmalloc() will return storage that is filled with a “ruin”
pattern. This helps catch errors with un-initialized storage, because a caller with bugs is more
likely to crash when using the ruined storage. Note that xmalloc() does not perform any
explicit checks when this technique is employed. The ruined data will contain 0x66 in every
allocated byte on allocation, and 0x77 in every previously allocated byte after being freed.

errctrl -c alloc.xmdbg ruin_all=<frequency>

Check for overwrites in small allocations
This is one of the three options that affect the frequency of trailers. There are two options that
deal with trailers, and a third option deals with compatibility with previous versions of AIX.
This option is specific for allocations that are less than half a page. A trailer is written

Note: The bosdebug -M command sets all the frequencies for alloc.xmdbg at maximal level
except for “promotion settings” which are all set to zero (0). A reboot is required in order for
bosdebug to take effect.
Chapter 3. AIX advanced continuous availability tools and features 131

immediately after the returned storage. Trailers can consume up to 128 bytes of storage.
When storage is freed, xmfree() will ensure consistency in the trailer bytes and log an error.

errctrl -c alloc.xmdbg small_trailer=<frequency>

The error disposition can be made more severe by changing the disposition of medium
severity errors as follows:

errctrl -c alloc.xmdbg medsevdisposition=sysdump

Be aware, however, that overwrites to the trailers and other medium severity errors will cause
a system crash if the severity disposition is changed to be more severe.

Check for overwrites in large allocations
This option sets the frequency of trailers that are added to allocations that require at least a
full page. This technique catches the same type of errors as a redzone, but a redzone always
starts at the next page boundary, and a trailer follows immediately after the bytes that are
beyond the requested size.

Trailers are checked at fragment free time for consistency. The error disposition can be
affected for these checks just as it is for the small_trailer option. Trailers and redzones can be
used together to ensure that overruns are detected. Trailers are not used if the requested size
is exactly a multiple of the page size. Overwrites can still be detected by using the redzone
option.

errctrl -c alloc.xmdbg large_trailer=<frequency>

Check for overwrites in all allocations
This option is provided just for compatibility with AIX 5.3. It sets the frequency that xmalloc()
will add a trailer to all allocations. To accomplish this, it overwrites the settings of both the
small_trailer and large_trailer options.

errctrl -c alloc.xmdbg alloc_trailer=<frequency>

Promote fragment allocations to whole pages
When an allocation that is less than half a 4 K page is promoted, the returned pointer is as
close to the end of the page as possible while satisfying alignment restrictions and an extra
“redzone” page is constructed after the allocated region. No other fragments are allocated
from this page.

This provides isolation for the returned memory and catches users that overrun buffers. When
used in conjunction with the df_promote option, this also helps catch references to freed
memory. This option uses substantially more memory than other options.

Sizes that are greater than 2 K are still promoted in the sense that an extra redzone page is
constructed for them.

Note: The tunable small_trailer did not exist on 5.3, because all trailers were controlled
with the single tunable known as alloc_trailer.

Note: The page size of the heap passed to xmalloc() makes no difference. If the heap
normally contains 64 K pages (kernel_heap or pinned_heap on a machine that supports a
64 K kernel heap page size), then the returned memory of a promoted allocation will still be
backed by 4 K pages.

These promoted allocations come from a region that has a 4 K page size, to avoid using an
entire 64 K page as a redzone.
132 IBM AIX Continuous Availability Features

The following option sets the frequency for which allocations are promoted. Supported sizes
are all powers of two: 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, and 32768.

errctrl -c alloc.xmdbg promote=<size>,<frequency>

Change the promotion settings of all sizes at once
This option duplicates the function of the promote option, but does not take size as an
argument. It applies the input frequency to all the promotion sizes with a single command.

ecctrl –c alloc.xmdbg promote_all=<frequency>

Defer the freeing of pages/promoted allocations
The deferred free technique means that when a memory object is freed, xmalloc() will take
measures to ensure that the object is not reallocated immediately. This technique helps catch
references to memory that has been freed.

errctrl -c alloc.xmdbg df_promote=<frequency>

This option affects the freeing of promoted fragments. It sets the frequency with which the
freeing of promoted fragment is deferred. Page promotion (that is, the promote option) and
df_promote are designed to be used together.

Defer the freeing of pages/small allocations
This option sets the frequency at which non-promoted fragments will be deferred. A memory
page that xmalloc manages contains multiple fragments of the same size or is part of a range
of pages.

Be aware that there is a difference between the option def_free_frag and the option
df_promote. The options are similar, but with def_free_frag, the freeing of every fragment on
a page will be deferred together. This implies the number of pages used by these two
techniques is substantially different:

� The df_promote option constructs one fragment per page (with an additional redzone
page).

� The def_free_frag option constructs multiple fragments per page (with no redzone).

errctrl -c alloc.xmdbg def_free_frag=<frequency>

Defer the freeing of pages/large allocations
This option helps catch references to memory that has been freed. It sets the frequency at
which xmalloc defers the freeing of larger allocations. Larger allocations are at least one
entire 4 K page in size.

Note: In AIX V5.3, this feature did not provide a redzone page, and always caused the
freeing of fragment to be deferred. To provide a redzone page, 5.3 used:

errctrl -c alloc.xmdbg doublepage_promote=<size>,<frequency>

In AIX V6.1, this option is provided but the function is identical to the promote option.

Also, in AIX V5.3, the doublepage_promote option always caused the freeing of fragment
to be deferred.

Note: The command bosdebug -s <promotion_frequency> is used to set promotion setting
for subsequent reboot.

Note: The options def_free_frag, promote_all, and df_promote do not exist in AIX 5.3.
Chapter 3. AIX advanced continuous availability tools and features 133

This option should be used with care because it can be expensive from a performance
standpoint. When large ranges are freed and deferred, all the pages in the range are
disclaimed. Presuming there is no error, all the memory will be faulted and zero filled the next
time it is referenced. “Read” references to freed memory are medium severity errors, while
“write” references always cause a system crash. If the disposition of medium severity errors is
set to cause a system crash, the system will crash on a “read” reference.

errctrl -c alloc.xmdbg deferred_free=<frequency>

Redzones for large allocations
This option sets the frequency of redzone page construction. This option is specific for
allocations of a page or more. With default error disposition in effect any “read” references to
redzone pages will cause an error log event, and “write” references will cause a system
crash.

errctrl -c alloc.xmdbg redzone=<frequency>

VMM page state checks
This option sets the frequency at which xmfree() will check page protection settings, storage
key bits and pin counts for memory being freed back to a heap. Not all errors in this area are
fatal. For instance, a page that has higher than expected pin count at free time will waste
pinned storage, but there are usually no fatal consequences of that.

When a page is returned that has a lower than expected pin count, has the wrong page
protection settings, or has the wrong hardware storage key associated with it, the system will
crash.

errctrl -c alloc.xmdbg vmmcheck=<frequency>

3.9.5 XMDBG tunables not affected by error check level

Memory leak percentage
This tunable sets the percentage of heap memory that can be consumed before an error is
logged. This is specific to the heaps controlled by the component. Heaps that are controlled
by other components are not affected.

For example, alloc.heap0 is a separate component that controls the heap used by the loader,
and it uses a different percentage than the kernel_heap, which is controlled by alloc.xmdbg.
Component level heaps created by heap_create() can be registered separately, and can be
given different percentages. Refer to 3.9.7, “Heap registration for individual debug control” on
page 137 for information about the individual heap registration mechanism.

errctrl -c alloc.xmdbg memleak_pct=<percentage>

Memory leak errors are classified as LOW_SEVERITY errors and the default disposition is to
ignore them. The error disposition for low severity errors can be modified to log an error or to
cause a system crash. This tunable can be seen in KDB by using the xm -Q command. The
field Ratio of memory to declare a memory leak shows the memory leak percentage.

Memory leak count
This tunable sets an outstanding allocation limit for all the fragment sizes. This is intended as
an aid in catching memory leaks that are very slow-growing. If the total number of outstanding
allocations of any fragment size grows beyond this limit, an error is logged. For example, an

Tip: This tunable requires the user to make a judgment about how much storage should be
consumed before a leak should be suspected. Users who do not have that information
should not use the command. The default percentage is 100% (1024/1024).
134 IBM AIX Continuous Availability Features

error occurs if the limit is set to 20,000, and 20,001 allocations are outstanding for any of the
fragment sizes. This error is classified as a LOW_SEVERITY error, and the default
disposition for the error is to ignore it. The default value of this setting is -1 meaning no check
is made. This limit must be set to a positive value (=< 1024) by the operator to cause the
check to be made.

errctrl -c alloc.xmdbg memleak_count=<num>

This tunable can be seen in KDB by using the xm -Q command. The field Outstanding memory
allocations to declare a memory leak shows the memory leak count.

Large allocation record keeping
This tunable sets the size of an allocation that we will always record. Very large allocations
are frequently never freed, so this setting allows the operator to record all outstanding
allocations that are greater than or equal to “minsize” bytes. The default value of this tunable
is 0x1000000 bytes.

errctrl -c alloc.xmdbg minsize=<num>

This tunable can be seen in KDB by using the xm –Q command. The field Minimum allocation
size to force a record for shows the large allocation record keeping.

Reset error log handling
This tunable avoids having the error log become flooded. Each subcomponent of the alloc
component will only record up to 200 errors in the error log before reaching a threshold. If the
200 log limit is reached and the count is not reset, error logging by the component will not
resume until after a partition reboot.

errctrl -c alloc.xmdbg reset_errlog_count

Deferral count
This tunable is the total number of pages that are deferred before xmalloc() recycles deferred
storage back to a heap. Deferring the freeing of storage for a very long time can result in
fragmented heaps that result in allocation failures for large requests. Xmalloc supports setting
this option to -1 which causes xmalloc() to defer reallocation as long as possible. This means
the heap is exhausted before memory is recycled. On AIX V6.1, the default value is 0x4000
deferrals.

errctrl –c alloc.xmdbg deferred_count=<num>

This tunable can be seen in KDB using the xm –Q command. The field Deferred page
reclamation count shows the deferral count.

Note: The alloc.xmdbg and alloc.heap0 components and their potential child components
support a variety of tunables that can be changed as a group. Use the errctrl command
using the errcheckminimal, errchecknormal, errcheckdetail, and errchecklevel
subcommands.

Changes to the alloc.xmdbg component apply to the kernel_heap, pinned_heap, and all
heaps created by kernel subsystems via the heap_create() subroutine. alloc.xmdbg is the
default xmalloc-related component, and other components are mentioned only for
completeness.

The alloc.heap0 component applies to the loader-specific heap that appears in the kernel
segment.
Chapter 3. AIX advanced continuous availability tools and features 135

3.9.6 KDB commands for XMDBG

� xm -Q will display the value of current system level tunables.

� xm -H @<heap_name> -Q will display the value of tunables for the heap <heap_name>.

� xm -L 3 -u will sort all the allocation records in the system by size, and finds records that
have matching stack trace-backs. The command supports three levels of stack
trace-back, and the -L option allows up to three levels to be specified. It displays a
summary of each matching record by size.

Example 3-49 shows the total usage information about the kernel heap, and then information
that includes three levels of stack trace. Only partial output is shown.

Example 3-49 Detailed kernel heap usage information

(0)> xm -L 3 -u
 Storage area................... F100060010000000..F100060800000000
 (34091302912 bytes, 520192 pages)
 Primary heap allocated size.... 351797248 (5368 Kbytes)
 Alternate heap allocated size.. 56557568 (863 Kbytes)
Max_req_size....... 1000000000000000 Min_req_size....... 0100000000000000
Size Count Allocated from

Max_req_size....... 0100000000000000 Min_req_size....... 0000000010000000
Size Count Allocated from

Max_req_size....... 0000000010000000 Min_req_size....... 0000000001000000
Size Count Allocated from

000000000C000000 1 4664B8 .nlcInit+0000D4
 62AF30 .lfsinit+00018C
 78B6E4 .main+000120
Max_req_size....... 0000000001000000 Min_req_size....... 0000000000100000
Size Count Allocated from

00000000108DD000 32 658B38 .geninit+000174
 45C9C0 .icache_init+00009C
 45D254 .inoinit+000770
0000000000900000 3 5906B4 .allocbufs+0000B0
 5920CC .vm_mountx+0000C8
 592BE4 .vm_mount+000060
0000000000800000 1 786334 .devsw_init+000050
 78B6E4 .main+000120
 34629C .start1+0000B8

:
:

Notice the following in the text:

� The text shows three levels of stack trace for kernel heap.

There are 32 records where inoint() called icache_init(), which called geninit(), which in
turn called xmalloc(). Total memory usage for these 32 calls is 0x108DD000 bytes.

� Similarly, there are 3 records where start1() called main(), which called devsc_init(), which
in turn called xmalloc(). Total memory usage by all these 3 records is 0x800000 bytes.

The command xm -H @<heap_name> -u will show the total memory usage of the heap
<heap_name>.
136 IBM AIX Continuous Availability Features

3.9.7 Heap registration for individual debug control

Kernel programmers can register the heap they created using heap_create() under the
alloc.xmdbg component by using the following command:

errctrl -c alloc.xmdbg skhp_reg=<addr>

Where <addr> is the address of heap and needs to be found from KDB. In Example 3-49 on
page 136, my_heap is an individual heap and is valid for registration under alloc.xmdbg. To find
its address in kernel space, execute dd my_heap in KDB.

After heap is registered under alloc.xmdbg, it should be visible under its component
hierarchy. Execute following command to see it:

errctrl -q -c alloc.xmdbg -r

The new child component represents the heap “my_heap” and can be controlled individually
by using pass-through commands. For further information about this topic, refer to 3.9.4,
“XMDBG tunables affected by error check level” on page 131, and to3.9.5, “XMDBG tunables
not affected by error check level” on page 134.

Note that persistence (the –P flag of the errctrl command) is not supported with this
mechanism because this new subcomponent will not exist at the next system boot.
Chapter 3. AIX advanced continuous availability tools and features 137

138 IBM AIX Continuous Availability Features

Appendix A. AIX features availability

Table A-1 lists AIX RAS tools availability.

Table A-1 AIX RAS tools availability

A

Name AIX version Hardware required

Dynamic Logical Partitioning (DLPAR) (AIX Related to hardware) 5.1 POWER4,5

CPU Guard 5.2 POWER4

CPU Sparing 5.2 POWER6

Predictive CPU Deallocation and Dynamic Processor Deallocation 5.3 +2 CPU

Processor recovery and alternate processor 5.3 POWER6

Excessive Interrupt Disablement Detection 5.3 ML3

Memory Page Deallocation 5.3 ML3 POWER5 and later

System Resource Controller (SRC) All versions

PCI hot plug management 5.1

Reliable Scalable Cluster Technology (RSCT) Subsystem All versions

Synchronous Unrecoverable Errors (SUE) 5.2 POWER4 and later

Automated system hang recovery 5.2

Run-Time Error Checking (RTEC) 5.3 TL3

Kernel Stack Overflow Detection 5.3 TL5

Kernel No-Execute Protection 5.3 TL5

Extended Error Handling (EEH) 5.3 TL5

Page space verification 6.1

User Storage Keys 5.3 TL5 POWER6

Kernel Storage Keys 6.1 POWER6
© Copyright IBM Corp. 2008. All rights reserved. 139

Advanced First Failure Data Capture Features (FFDC) 5.3 TL3

Traditional System Dump All versions

Firmware-Assisted Dump 6.1 The P6, 4 GB
memory, selected
disk

Live Dump and Component Dump 6.1

dumpctrl command 6.1

Parallel dump 5.3 TL5

Minidump 5.3 ML3

Trace (System trace) All versions

POSIX trace 6.1

iptrace 5.2

Component Trace facility (CT) 5.3 TL5

Lightweight Memory Trace (LMT) 5.3 TL3

ProbeVue 6.1

Error Logging All versions

Concurrent update 6.1

Core file control All versions (1)

Recovery Framework 6.1

Virtual IP address support (VIPA) 5.1

Multipath IP routing 5.1

Dead Gateway Detection 5.1

EtherChannel 5.1

Hot-swap disk 5.1

System backup (MKSYSB) and restore All versions

Alternate disk installation All versions

Network Install Manager (provisioning tool) All versions

LVM RAID options All versions

LVM Hot Spare Disk All versions

LVM Advanced RAID Support via dynamic volume expansion 5.1

Enhanced Journaled File System 5.2

GLVM 5.3 ML3

MPIO 5.2

Dynamic tracking of FC devices 5.2

Name AIX version Hardware required
140 IBM AIX Continuous Availability Features

(1) lscore and chcore commands were added in 5.3

Electronic Service Agent 5.2 ML1

Resource Monitoring and Control (RMC) Subsystem 5.1

Topas 5.2

The raso command 5.3 ML3

Dynamic Kernel Tuning 5.3

Partition mobility 5.3 POWER6

Live application mobility 5.3

Name AIX version Hardware required
Appendix A. AIX features availability 141

142 IBM AIX Continuous Availability Features

ronyms
ACL Access Control List

AIX Advanced Interactive eXecutive

AMR Authority Mask Register

API Application Programming Interface

ARP Address Resolution Protocol

ATS Advanced Technical Support

BOS Base Operating System

CPU Central Processing Unit

CSM Cluster Systems Management

CT Component Trace

DLPAR Dynamic LPAR

DMA Direct Memory Access

DR Disaster Recovery

FFDC First Failure Data Capture

FRU Field Replaceable Unit

GLVM Geographical Logical Volume
Manager

GPFS™ General Parallel File System™

HACMP High Availability Cluster
Multi-Processing

HACMP/XD HACMP eXtended Distance

HMC hardware Management Console

IBM International Business Machines
Corporation

IP Internet Protocol

IPC Inter-Process Communication

ITSO International Technical Support
Organization

JFS Journaled File System

LAN Local Area Network

LDAP Lightweight Directory Access
Protocol

LFS Logical File System

LMT Lightweight Memory Trace

LPAR Logical Partition

LUN Logical Unit Number

LVM Logical Volume Manager

MAC Media Access Control

MMU Memory Management Unit

MPIO Multi-Path Input/Output

NFS Network File System

NIM Network Installation Manager

Abbreviations and ac
© Copyright IBM Corp. 2008. All rights reserved.
ODM Object Data Manager

PCI Peripheral Component Interconnect

PCM Path Control Module

PFT Page Frame Table

PURR Processor Utilization Resource
Register

RAS Reliability, Availability,
Serviceability

RM Resource Manager

RMC Resource Monitoring and Control

RSCT Reliable Scalable Clustering
Technology

RTEC Real Time Error Checking

SAN Storage Area Network

SCSI Small Computer System Interface

SDD Subsystem Device Driver (Storage)

SEA Shared Ethernet Adapter

SFDC Second Failure Data Capture

SMIT System Management Interface Tool

SMP Symmetric Multi-Processing

SPOF Single Point of Failure

SRC System Resource Controller

SUE System Unrecoverable Error

TCP Transmission Control Protocol

TCP/IP Transmission Control
Protocol/Internet Protocol

TL Technology Level

TLB Transaction Look-aside Buffer

VGDA Volume Group Descriptor Area

VIOS Virtual I/O Server

VIPA Virtual IP Address

VLAN Virtual LAN

VMM Virtual Memory Manager

VMX Vector Multimedia eXtension

VPD Vital Product Data

WLM Workload Manager

WPAR Workload Partition
 143

144 IBM AIX Continuous Availability Features

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this paper.

IBM Redbooks publications

For information about ordering these publications, see “How to get IBM Redbooks
publications” on page 146. Note that some of the documents referenced here may be
available in softcopy only.

� AIX 5L Differences Guide Version 5.2 Edition, SG24-5765

� IBM eServer Certification Study Guide - AIX 5L Performance and System Tuning,
SG24-6184

� AIX Version 6.1 Differences Guide, SC27-7559

� Implementing High Availability Cluster Multi-Processing (HACMP) Cookbook, SG24-6769

� IBM System p5 Approaches to 24x7 Availability Including AIX 5L, SG24-7196

� NIM from A to Z in AIX 5L, SG24-7296

� AIX V6 Advanced Security Features Introduction and Configuration, SG24-7430

� Introduction to Workload Partition Management in IBM AIX Version 6, SG24-7431

� IBM System p Live Partition Mobility, SG24-7460

� AIX 5L Differences Guide Version 5.3 Edition, SG24-7463

� Advanced POWER Virtualization on IBM System p5: Introduction and Configuration,
SG24-7940

� IBM eServer p5 590 and 595 System Handbook, SG24-9119

Other publications

These publications are also relevant as further information sources:

� AIX 5L Version 5.3 Commands Reference, Volume 1, a-c, SC23-4888

� AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts,
SC23-4900

� AIX 5L System Management Guide: Operating System and Devices, SC23-5204

� AIX Version 6.1 Commands Reference, Volume 4, SC23-5246

� AIX Version 6.1 General Programming Concepts: Writing and Debugging Programs,
SC23-5259

� Reliable Scalable Cluster Technology: Administration Guide, SA22-7889
© Copyright IBM Corp. 2008. All rights reserved. 145

Online resources

These Web sites are also relevant as further information sources:

� POWER6 Availability white paper

http://www-05.ibm.com/cz/power6/files/zpravy/WhitePaper_POWER6_availabilty.PDF

� Dynamic CPU deallocation article in IBM Systems Journal

http://www.research.ibm.com/journal/sj/421/jann.html

� AIX V5.3 documentation page

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp

� IBM Systems and Technology Group Technotes (FAQs): Minidump

http://igets3.fishkill.ibm.com/DCF/isg/isgintra.nsf/all/T1000676?OpenDocument&H
ighlight=0,minidump

� AIX Security

http://www.redbooks.ibm.com/redbooks/pdfs/sg247430.pdf

How to get IBM Redbooks publications

You can search for, view, or download IBM Redbooks publications, Redpapers, Technotes,
draft publications and Additional materials, as well as order hardcopy books, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
146 IBM AIX Continuous Availability Features

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-05.ibm.com/cz/power6/files/zpravy/WhitePaper_POWER6_availabilty.PDF
http://igets3.fishkill.ibm.com/DCF/isg/isgintra.nsf/all/T1000676?OpenDocument&Highlight=0,minidump

Index

Numerics
64-bit kernel 58–59, 63, 83, 101
64K page 132

A
action block 123
Active dead gateway detection 38
AIX 5.3 126, 132–133
AIX capability 56
AIX mobility features 52
AIX Reliability, Availability, and Serviceability (RAS) com-
ponents hierarchy 56
AIX service 57
AIX system 57–58, 60–61

dump 60
outage 8

AIX V5.3
ML3 61
TL3 8
TL5 8, 56

AIX V6.1 9, 55
default checking level 126
release 83

AIX Version 139
5.3 107
5.3 ML3 8
V5.3 ML3 56

AIX6.1 XMDBG 126
alloc.xmdb g 126–128

alloc_record 131
alloc_trailer 132
component 135, 137
def_free_frag 133
deferred_count 135
deferred_free 134
doublepage_promote 133
errcheckdetail 129
errchecklevel 130
errcheckon 126
large_trailer 132
medsevdisposition 132
memleak_count 135
memleak_pct 134
minsize 135
promote_all 133
redzone 134
reset_errlog_count 135
RTEC level 127
ruin_all 131
skhp_reg 137
small_trailer 132
vmmcheck 134

Alternate disk installation 40–41
alternate processor recovery 13
© Copyright IBM Corp. 2008. All rights reserved.
AMR value 99
API 98
Authority Mask Register (AMR) 21
autonomic computing 11
aware component 64

B
base kernel 71–72

C
Capacity on Demand 14
cluster security services 16
commands

/usr/sbin/bosboot 19
alog 31
cfgmgr 31
chcore 35
chdev 12
chps 21
chvg 43
ctctrl 30
curt 28
dmpuncompress 27
dumpctrl 24, 26
errctrl 13
errdemon 31
errlast 31
errlogger 31
errpt 31
filemon 49
fileplace 49
ioo 49–50
iostat 49
ipreport 28
iptrace 28
livedumpstart 26
lparstat 49
lsconf 49
lscore 35
lvmstat 49
mdmprpt 62
mkps 21
multibos 41
netstat 49
nfso 50
no 49–50
perfpmr 49
pprof 28
probevue 30
raso 50–51
sar 49
schedo 50
snap 24, 61
splat 28
 147

sysdumpdev 27
tprof 28
trace 28
trcctl 28
trcevgrp 28
trcrpt 28
tunchange 49
tuncheck 49
tundefault 49
tunrestore 49
tunsave 49
vmo 50
vmstat 49

component dump 25, 64, 68, 140
Component Trace (CT) 23, 29, 56, 140
compressed dump file 27
Concurrent update 55, 71, 140

command 72
package file 73
terminology 71

Continuous availability 1, 4–5, 8
core file 35
core file control 35
CPU deallocation 13
CPU Guard 12
CPU_ALLOC_ABORTED entry 59

D
data storage interrupt 21
DB2 core 100
Dead gateway detection 36–37
default amount 57–58
device driver 29
DGD 38
Disaster recovery (DR) 2–3
DLPAR 12
dynamic kernel tuning 50
dynamic processor deallocation 13
Dynamic tracking of fibre channel devices 47

E
Efix Attribute 74, 76
Efix Description 75
efix file 74–75

Total number 75
EFIX Id 73
efix installation 74–75
EFIX label 73–74, 76
EFIX package 73–75
Efix State 75
EFIXES Menu 76
Electronic Service Agent 48
Enhanced Journaled File System (JFS2) 46
entry field 57, 68, 73, 76

select values 73, 77
ERRCHECK_MAXIMAL 126
ERRCHECK_MAXIMAL Disabled 58
error detection 8
error logging 30

EtherChannel 36, 38–39
Ethernet link aggregation 17
Extended Error Handling (EEH) 20, 139

F
FFDC 7–8, 29
FFDC capability 7
Field Replaceable Unit (FRU) 7
firmware-assisted system 24
First Failure Data Capture (FFDC) 7, 12, 21, 23, 56–57,
126
format minidumps 62

G
gated 38
Geographic Logical Volume Manger (GLVM) 44
GLVM 44

H
hardware key

mapping 83
hardware keysets 98–99
heap registration 134
heap size 26
hot-swap disks 40

I
IBM System p

p5-595 server 7
inetd.conf 33
int argc 93–94
iptrace 29

J
Journaled File System (JFS) 46

K
kdb context 71
kernel component 29
kernel extension 29, 64, 71–72

Exporting file 93
kernel key 79
kernel keys 22
kernel no-execute protection 20
kernel recovery framework 19
kk VMM_PMAP 109

L
LDAP 51
Lightweight Memory Trace (LMT) 8, 23, 30, 55, 57–58,
140
List EFIXES 72
Live application mobility 52
live dump 24–25, 64–65, 68–69
Live partition mobility 52
LMT buffer 59
148 IBM AIX Continuous Availability Features

LMT file 60
Logical Volume Manager (LVM) 44
ls core 105–106
LUN subcomponent 71
LVM 17
LVM mirroring 17
LVM quorum 44

M
Machine Status Table (MST) 63, 109
memory page deallocation 14
Memory Persistent Deallocation 14
minidump 27, 55, 61–62
minidump entry 62
MINIDUMP_LOG 62
MPIO 17, 46
multibos utility 41
Multipath I/O (MPIO) 46
Multipath IP routing 36–37

N
Network Installation Manager (NIM) 41–42
NIM server 41
NVRAM 27

O
operating system 7, 9

reboot 102
operating system error 8

P
parallel dump 27
partition reboot 135
Passive dead gateway detection 38
path control module (PCM) 46
pax file 61
PCI hot plug management 15
performance monitoring 48
PFT entry 110
POSIX trace 29, 55, 140
POWER5 system 59
probe actions 113
probe event 113
probe location 113
Probe manager 113
probe point 113
probe point specification 115–116
probe type 113
probevctrl command 114
ProbeVue 30, 55

action block 115–116
dynamic tracing benefits and restrictions 111
interval probe manager 118
introduction 111
predicate 116
probe actions 113
probe event 113
probe location 113

Probe manager 117
probe manager 113
probe point 113
probe point specification 115–116
probe type 113
probevctrl command 114
probevue command 114
ProbeVue example 119
ProbeVue Terminology 113
system call probe manager 117
user function probe manager 117
Vue functions 118
Vue overview 114
Vue program 114
Vue Programming Language 113
Vue script 114–115

probevue command 114
processor utilization register (PURR) 28
protection gate

corresponding kernel keys 109

R
RAID 17, 43
rare event 57
read/write access 98
read/write attribute 107
Reboot Processing 75
Redbooks Web site 146

Contact us xii
Redzone 128–129
Reliability, Availability, and Serviceability (RAS) 22, 51,
56, 58, 60
Reliable Scalable Cluster Technology (RSCT) 15, 139
remaining CPU 62
resource manager 16
Resource Monitoring and Control (RMC) 15, 141
RMC 16
routed 38
RSCT 16
RTEC level 127, 130

alloc.xmdbg 130
Run time error checking

xmalloc debug enhancement 126
Run-Time Error Checking (RTEC) 8, 20, 23, 56, 126, 139

S
SC_AIX_UKEYS 107
SCSI disc 65
Second Failure Data Capture (SFDC) 58, 102
SIGSEGV 106
single points of failure (SPOFs) 3
smitty menu 72
SMP 12
Special Uncorrectable Error 18
SRC 14
stack overflow 20
Storage key 55, 79–80
storage key 19, 21
subcomponent 64–65
 Index 149

subsequent reboot 71, 133
SUE 18
Symbolic constant 121
syslogd 32
System backup (mksysb) 40
system call 91, 96

return value 123
system crash 23, 61
system dump 23
System p

hardware 8
hardware aspect 8
server 6

System p hardware 8
system reboot 102, 126
System Resource Controller (SRC) 14, 29, 139
system trace 27

T
target thread 121

Current errno value 121
effective user Id 121

tmp/ibmsupt directory 61
topas 49
Tracing Facility

dynamic tracing benefits and restrictions 111
interval probe manager 118
predicate 116
probe action block 115–116
probe actions 113
probe event 113
probe location 113
Probe manager 113, 117
probe point 113
probe point specification 115–116
probe type 113
probevctrl command 114
ProbeVue 111
probevue command 114
ProbeVue example 119
ProbeVue Terminology 113
system call probe manager 117
user function probe manager 117
Vue functions 118
Vue Overview 114
Vue program 114
Vue Programming Language 113
Vue script 114–115

trcrpt command 57, 60–61
M parameter 60

U
UK_RW access 102
uncompressed header 62
user key 100
user keys 22

V
VGDA 44
VGSA 44
VIOS 17
VIPA 37
Virtual I/O Server 17
Virtual IP address 37
Virtual IP address support 36
Virtual SCSI 65, 71
Volume Group Descriptor Area 44
Volume Group Status Area 44
Vue Overview 114
Vue program 114
Vue Programming Language 113
Vue script 114–115, 122

X
xmalloc allocator 125
xmalloc debug

tunable 128
150 IBM AIX Continuous Availability Features

®

REDP-4367-00

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Redpaper™

IBM AIX Continuous
Availability Features

Learn about AIX V6.1
and POWER6
advanced availability
features

View sample
programs that exploit
storage protection
keys

Harden your AIX
system

This IBM Redpaper describes the continuous availability features
of AIX Version 6, Release 1. It also addresses and defines the
terms Reliability, Availability, and Serviceability (RAS) as used in
an IT infrastructure. It touches on the global availability picture for
an IT environment in order to better clarify and explain how AIX
can improve that availability. The paper is intended for AIX
specialists, whether customers, business partners, or IBM
personnel, who are responsible for server availability.
A key goal of AIX development is to improve overall system
serviceability by developing problem determination tools and
techniques that have minimal impact on a live system; this
document explains the new debugging tools and techniques, as
well as the kernel facilities that work in conjunction with new
hardware, that can help you provide continuous availability for
your AIX systems.
The paper provides a broad description of the advanced
continuous availability tools and features on AIX that help to
capture software problems at the moment they appear, with no
need to recreate the failure. In addition to software problems, the
AIX kernel works closely with advanced hardware features to
identify and isolate failing hardware and replace hardware
components dynamically without bringing down the system.
The tools discussed include Dynamic Trace, Lightweight Memory
Trace, Component Trace, Live dump and Component dump,
Storage protection keys (kernel and user), Live Kernel update,
and xmalloc debug.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this paper
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Overview
	1.2 Business continuity
	1.3 Disaster recovery
	1.4 High availability
	1.5 Continuous operations
	1.6 Continuous availability
	1.6.1 Reliability
	1.6.2 Availability
	1.6.3 Serviceability

	1.7 First Failure Data Capture
	1.8 IBM AIX continuous availability strategies

	Chapter 2. AIX continuous availability features
	2.1 System availability
	2.1.1 Dynamic Logical Partitioning
	2.1.2 CPU Guard
	2.1.3 CPU Sparing
	2.1.4 Predictive CPU deallocation and dynamic processor deallocation
	2.1.5 Processor recovery and alternate processor
	2.1.6 Excessive interrupt disablement detection
	2.1.7 Memory page deallocation
	2.1.8 System Resource Controller
	2.1.9 PCI hot plug management
	2.1.10 Reliable Scalable Cluster Technology
	2.1.11 Dual IBM Virtual I/O Server
	2.1.12 Special Uncorrectable Error handling
	2.1.13 Automated system hang recovery
	2.1.14 Recovery framework

	2.2 System reliability
	2.2.1 Error checking
	2.2.2 Extended Error Handling
	2.2.3 Paging space verification
	2.2.4 Storage keys

	2.3 System serviceability
	2.3.1 Advanced First Failure Data Capture features
	2.3.2 Traditional system dump
	2.3.3 Firmware-assisted system dump
	2.3.4 Live dump and component dump
	2.3.5 The dumpctrl command
	2.3.6 Parallel dump
	2.3.7 Minidump
	2.3.8 Trace (system trace)
	2.3.9 Component Trace facility
	2.3.10 Lightweight Memory Trace (LMT)
	2.3.11 ProbeVue
	2.3.12 Error logging
	2.3.13 The alog facility
	2.3.14 syslog
	2.3.15 Concurrent AIX Update
	2.3.16 Core file control

	2.4 Network tools
	2.4.1 Virtual IP address support (VIPA)
	2.4.2 Multipath IP routing
	2.4.3 Dead gateway detection
	2.4.4 EtherChannel
	2.4.5 IEEE 802.3ad Link Aggregation
	2.4.6 2-Port Adapter-based Ethernet failover
	2.4.7 Shared Ethernet failover

	2.5 Storage tools
	2.5.1 Hot swap disks
	2.5.2 System backup (mksysb)
	2.5.3 Alternate disk installation
	2.5.4 The multibos utility
	2.5.5 Network Installation Manager (NIM)
	2.5.6 Logical Volume Manager-related options
	2.5.7 Geographic Logical Volume Manager
	2.5.8 Journaled File System-related options
	2.5.9 AIX storage device driver-related options

	2.6 System and performance monitoring and tuning
	2.6.1 Electronic Service Agent
	2.6.2 Other tools for monitoring a system
	2.6.3 The topas command
	2.6.4 Dynamic kernel tuning

	2.7 Security
	2.8 AIX mobility features
	2.8.1 Live partition mobility
	2.8.2 Live application mobility

	Chapter 3. AIX advanced continuous availability tools and features
	3.1 AIX Reliability, Availability, and Serviceability component hierarchy
	3.1.1 First Failure Data Capture feature

	3.2 Lightweight memory trace
	3.2.1 LMT implementation

	3.3 The snap command
	3.4 Minidump facility
	3.4.1 Minidump formatter

	3.5 Live dump and component dump
	3.5.1 Dump-aware components
	3.5.2 Performing a live dump

	3.6 Concurrent AIX Update
	3.6.1 Concurrent AIX Update terminology
	3.6.2 Concurrent AIX Update commands and SMIT menus

	3.7 Storage protection keys
	3.7.1 Storage protection keys overview
	3.7.2 System management support for storage keys
	3.7.3 Kernel mode protection keys
	3.7.4 Degrees of storage key protection and porting considerations
	3.7.5 Protection gates
	3.7.6 Example using kernel keys
	3.7.7 User mode protection keys
	3.7.8 Kernel debugger commands
	3.7.9 Storage keys performance impact

	3.8 ProbeVue
	3.8.1 ProbeVue terminology
	3.8.2 Vue programming language
	3.8.3 The probevue command
	3.8.4 The probevctrl command
	3.8.5 Vue overview
	3.8.6 ProbeVue dynamic tracing example
	3.8.7 Other considerations for ProbeVue

	3.9 Xmalloc debug enhancements in AIX V6.1
	3.9.1 New features in xmalloc debug
	3.9.2 Enabling/disabling xmalloc RTEC and displaying current value
	3.9.3 Run-time error checking (RTEC) levels for XMDBG (alloc.xmdbg)
	3.9.4 XMDBG tunables affected by error check level
	3.9.5 XMDBG tunables not affected by error check level
	3.9.6 KDB commands for XMDBG
	3.9.7 Heap registration for individual debug control

	Appendix A. AIX features availability
	Abbreviations and acronyms
	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Index
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

